988 resultados para Option (including the warrants)
Resumo:
The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine-and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 mu m that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.
Resumo:
We examine the possibility that a new strong interaction is accessible to the Tevatron and the LHC. In an effective theory approach, we consider a scenario with a new color-octet interaction with strong couplings to the top quark, as well as the presence of a strongly coupled fourth generation which could be responsible for electroweak symmetry breaking. We apply several constraints, including the ones from flavor physics. We study the phenomenology of the resulting parameter space at the Tevatron, focusing on the forward-backward asymmetry in top pair production, as well as in the production of the fourth-generation quarks. We show that if the excess in the top production asymmetry is indeed the result of this new interaction, the Tevatron could see the first hints of the strongly coupled fourth-generation quarks. Finally, we show that the LHC with root s = 7 TeV and 1 fb(-1) integrated luminosity should observe the production of fourth-generation quarks at a level at least 1 order of magnitude above the QCD prediction for the production of these states.
Resumo:
We present a first-principles systematic study of the electronic structure of SiO(2) including the crystalline polymorphs alpha quartz and beta cristobalite, and different types of disorder leading to the amorphous phase. We start from calculations within density functional theory and proceed to more sophisticated quasiparticle calculations according to the GW scheme. Our results show that different origins of disorder have also different impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the size of the mobility gap in each case.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
Glossoscolex paulistus is a free-living earthworm encountered in south-east Brazil. Its oxygen transport requirements are undertaken by a giant extracellular haemoglobin, or erythrocruorin (HbGp), which has an approximate molecular mass of 3.6 MDa and, by analogy with its homologue from Lumbricus terrestris (HbLt), is believed to be composed of a total of 180 polypeptide chains. In the present work the full 3.6 MDa particle in its cyanomet state was purified and crystallized using sodium citrate or PEG8000 as precipitant. The crystals contain one-quarter of the full particle in the asymmetric unit of the I222 cell and have parameters of a = 270.8 angstrom, b = 320.3 angstrom and c = 332.4 angstrom. Diffraction data were collected to 3.15 angstrom using synchrotron radiation on beamline X29A at the Brookhaven National Laboratory and represent the highest resolution data described to date for similar erythrocruorins. The structure was solved by molecular replacement using a search model corresponding to one-twelfth of its homologue from HbLt. This revealed that HbGp belongs to the type I class of erythrocruorins and provided an interpretable initial electron density map in which many features including the haem groups and disulfide bonds could be identified.
Resumo:
We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify and explain two distinct regimes separated by a critical density n(c). Below n(c), the per particle exchange energy is lowered by the contribution of L=1, whereas above n(c) it is increased. As special cases of our general equation we recover various known more limited results for higher fields, and we identify and correct a few inconsistencies in some of these earlier expressions.
Resumo:
We apply thermal-lens (TL) spectrometry to measure the angular dependence of the TL effect on colquiriite single crystals. The experiments were performed with LiSrAlF(6) and LiSrGaF(6) using a two-beam mode-mismatched configuration. The results show that it is possible to minimize the TL effect by selecting the appropriate crystal orientation. Our data also show that the anisotropy of the linear thermal expansion coefficient drives the amplitude of the TL effect, including the inversion from focusing to defocusing as the crystal orientation angle tends to the c-axis direction. The results may be useful for those working to develop a high-power laser using LiSrAlF(6)(:Cr) and LiSrGaF(6)(:Cr) single crystals, allowing for optimization of the designed laser cavity. (C) 2008 Optical Society of America.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
Eusarcus Perty 1833 is one of the oldest described genera of Pachylinae, comprising 36 species distributed from northeastern to southern Brazil (including the central west region), northeastern Argentina, eastern Paraguay and Uruguay. The genus is reviewed and a new classification is proposed based on a cladistic analysis. A cladistic analysis was performed with the 34 valid species of Eusarcus and 11 species belonging to certain Gonyleptidae subfamilies. The data matrix has 67 characters: 14 from dorsal scutum and pedipalp, 38 from male legs and 15 from male genitalia. Two equally parsimonious trees were found (L=319; C. I.=0.26, R. I.=0.61). Pygophalangodus gemignanii uruguayensis Ringuelet 1955a and Pygophalangodus gemignanii gemignanii Mello-Leitao 1931b are here elevated to the category of species, and the following new combinations are proposed: E. catharinensis (Mello-Leitao 1927); E. berlae (Mello-Leitao 1932); E. gemignanii (Mello-Leitao 1931b); E. signatus(Roewer 1949); E. sooretamae (Soares & Soares 1946a); E. uruguayensis (Ringuelet 1955a). The following generic synonymies are proposed: Eusarcus Perty 1833 (type species E. armatus Perty 1833) = Metagraphinotus Mello-Leitao 1927 (type species M. catharinensis Mello-Leitao 1927), Pareusarcus Roewer 1929 (type species P. corniculatus Roewer 1929), Pygophalangodus Mello-Leitao 1931b (type species P. gemignanii-gemignanii Mello-Leitao 1931b) and Antetriceras Roewer 1949 (type species A. signatus Roewer 1949). The following specific synonymies are proposed: Eusarcus hastatus Sorensen 1884 = Pucrolioides argentina Roewer 1913, E. guimaraensi H. Soares 1945, Jacarepaguana pectinifemur Piza 1943, Canestrinia canalsi Mello-Leitao 1931a, and E. maquinensis H. Soares 1966b; E. armatus Perty 1833 = E. curvispinosus Mello-Leitao 1923b, and Enantiocentron montis Mello-Leitao 1936; Eusarcus catharinensis (Mello-Leitao 1927) = E. antoninae Mello-Leitao 1936, E. perpusillus Mello-Leitao 1945, E. tripos Mello-Leitao 1940, and Metagraphinotus trochanterspinosus Soares & Soares 1947b; E. nigrimaculatus Mello-Leitao 1924 = Pareusarcus centromelos Mello-Leitao 1935a, E. furcatus Roewer 1929, Orguesia armata Roewer 1913, and Pareusarcus corniculatus Roewer 1929; E. oxyacanthus Kollar in Koch 1839a = Enantiocentron doriphorus Mello-Leitao 1932, and E. spinimanu Mello-Leitao 1932; E. pusillus Sorensen 1884 = E. vervloeti B. Soares 1944c; E. berlae Mello-Leitao 1932 = Metagraphinotus arlei Mello-Leitao 1935a. Metapucrolia armata (Sorensen 1895) is revalidated, transferred to Eusarcus and considered as a species inquirenda. A new name, Eusarcus metapucrolia is proposed for this species to avoid homonymy with the type species of Eusarcus, E. armatus Perty 1833. Eusarcus aberrans Mello-Leitao 1939a is considered as a species inquirenda. The male of E. teresincola Soares & Soares 1946a is described. Female of the following species are described: E. bifidus Roewer 1929; E. dubius B. Soares 1943b; E. insperatus B. Soares 1944a; E. schubarti Soares & Soares 1946a; E. sooretamae (Soares & Soares 1946a). The following new species are described from Brazil: E. acrophthalmus (type locality: Bahia, Ilheus, Parataquice); E. alpinus (Rio de Janeiro, Santa Maria Madalena, Parque Estadual do Desengano); E. caparaoensis (Minas Gerais, Alto Caparao, Parque Nacional do Caparao); E. cavernicola (Goias, Sao Domingos, Parque Estadual de Terra Ronca, Lapa da Angelica); E. didactylus (Rio de Janeiro, Teresopolis, Parque Nacional Serra dos Orgaos); E. garibaldiae (Santa Catarina, Itajai); E. geometricus (Rio de Janeiro, Teresopolis, Parque Nacional Serra dos Orgaos); E. manero (Rio de Janeiro, Marica, Itaipuacu); E. matogrossensis (Mato Grosso, Chapada dos Guimaraes); E. mirabilis (Minas Gerais, Marlieria, Parque Estadual Rio Doce); E. sergipanus (Sergipe, Itabaiana, Parque Nacional de Itabaiana) and E. tripectinatus (Minas Gerais, Rio Preto). The holotype of E. curvispinosus is proposed as the neotype of E. armatus Perty 1833, the type material of which has been lost. Lectotypes for the following species were designated: E. aduncus; E. hastatus; E. oxyacanthus.
Resumo:
We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
Swallowing dynamics involves the coordination and interaction of several muscles and nerves which allow correct food transport from mouth to stomach without laryngotracheal penetration or aspiration. Clinical swallowing assessment depends on the evaluator`s knowledge of anatomic structures and of neurophysiological processes involved in swallowing. Any alteration in those steps is denominated oropharyngeal dysphagia, which may have many causes, such as neurological or mechanical disorders. Videofluoroscopy of swallowing is presently considered to be the best exam to objectively assess the dynamics of swallowing, but the exam needs to be conducted under certain restrictions, due to patient`s exposure to radiation, which limits periodical repetition for monitoring swallowing therapy. Another method, called cervical auscultation, is a promising new diagnostic tool for the assessment of swallowing disorders. The potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. Even so, the captured sound has an amount of noise, which can hamper the evaluator`s decision. In that way, the present paper proposes the use of a filter to improve the quality of audible sound and facilitate the perception of examination. The wavelet denoising approach is used to decompose the noisy signal. The signal to noise ratio was evaluated to demonstrate the quantitative results of the proposed methodology. (C) 2007 Elsevier Ltd. All rights reserved.