940 resultados para ORGANIC-INORGANIC HYBRID COMPOSITES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limited information on the East Antarctic Ice Sheet (EAIS) geometry during Marine Isotope Stage 3 (MIS 3; 60-25 ka) restricts our understanding of its behaviour during periods of climate and sea level change. Ice sheet models forced by global parameters suggest an expanded EAIS compared to the Holocene during MIS 3, but field evidence from East Antarctic coastal areas contradicts such modelling, and suggests that the ice sheet margins were no more advanced than at present. Here we present a new lake sediment record, and cosmogenic exposure results from bedrock, which confirm that Rauer Group (eastern Prydz Bay) was ice-free for much of MIS 3. We also refine the likely duration of the Last Glacial Maximum (LGM) glaciation in the region. Lacustrine and marine sediments from Rauer Group indicate the penultimate period of ice retreat predates 50 ka. The lacustrine record indicates a change from warmer/wetter conditions to cooler/drier conditions after ca. 35 ka. Substantive ice sheet re-advance, however, may not have occurred until much closer to 20 ka. Contemporary coastal areas were still connected to the sea during MIS 3, restricting the possible extent of grounded ice in Prydz Bay on the continental shelf. In contrast, relative sea levels (RSL) deduced from field evidence indicate an extra ice load averaging several hundred metres thicker ice across the Bay between 45 and 32 ka. Thus, ice must either have been thicker immediately inland (with a steeper ice profile), or there were additional ice domes on the shallow banks of the outer continental shelf. Further work is required to reconcile the differences between empirical evidence of past ice sheet histories, and the history predicted by ice sheet models from far-field temperature and sea level records.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper evaluates the effects of organic and inorganic fertilizers on the growth of okra (variety NH-Ae 47-4. Organic fertilizers (cow dung and poultry droppings) and inorganic (NPK 15:15:15 and Urea 64:0) fertilizers were used for the experiment. The fertilizers were weighed and applied at 5g, 10g and 15g and were replicated three times and each having a control. Vegetative growth parameters taken include, shoot fresh weight (g), dry weight (g), plant height (cm), leaf number, stem girth (cm), leaf area (cm2). The results obtained from the experiment showed that the effect of the treatments were significantly difference from the control for all the parameters accessed with urea fertilizer having least effect. Plants treated with poultry litters have best performance by recording the highest fresh and dry weight (0.39g) at 4 weeks after planting (WAP); highest stem height 29.33cm for all the concentrations applied. Similarly, it has highest leaf area and stem girth (64.67cm2and 2.23cm respectively) at 8WAP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research in the field of organic spintronics highlighted the peculiar spin-dependent properties of the interface formed by an organic semiconductor (OSC) chemisorbed over a 3d ferromagnetic metal, also known as spinterface. The hybridization between the molecular and metallic orbitals, typically π orbitals of the molecule and the d orbitals of the ferromagnet, give rise to spin dependent properties that were not expected by considering the single components of interfaces, as for example the appearance of a magnetic moment on non-magnetic molecules or changes in the magnetic behavior of the ferromagnet. From a technological viewpoint these aspects provide novel engineering schemes for spin memory and for spintronics devices, featuring unexpected interfacial magnetoresistance, spin-filtering effects and even modulated magnetic anisotropy. Applications of these concepts to devices require nevertheless to transfer the spinterface effects from an ideal interface to room temperature operating thin films. In this view, my work presents for the first time how spinterface effects can be obtained even at room temperature on polycrystalline ferromagnetic Co thin films interfaced with organic molecules. The considered molecules were commercial and widely used in the field of organic electronics: Fullerene (C60), Gallium Quinoline (Gaq3) and Sexithiophene (T6). An increase of coercivity, up to 100% at room temperature, has been obtained on the Co ultra-thin films by the deposition of an organic molecule. This effect is accompanied by a change of in-plane anisotropy that is molecule-dependent. Moreover the Spinterface effect is not limited to the interfacial layer, but it extends throughout the whole thickness of the ferromagnetic layer, posing new questions on the nature of the 3d metal-molecule interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tomato culture demands large quantities of mineral nutrients, which are supplied by synthetic fertilizers in the conventional cultivation system. In the organic cultivation system only alternative fertilizers are allowed by the certifiers and accepted as safe for humans and environment. The chemical composition of rice bran, oyster flour, cattle manure and ground charcoal, as well as soils and tomato fruits were evaluated by instrumental neutron activation analysis (INAA). The potential contribution of organic fertilizers to the enrichment of chemical elements in soil and their transfer to fruits was investigated using concentration ratios for fertilizer and soil samples, and also for soil and tomato. Results evidenced that these alternative fertilizers could be taken as important sources of Br, Ca, Ce, K, Na and Zn for the organic tomato culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the Sao Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran.