898 resultados para NONLINEAR-ANALYSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

19 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are studied, respectively. An instability number, eta, is defined, and the critical gap distance, g(cr), between the mainplate and the substrate is derived. According to the values of eta and g, the instability criteria of the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the bifurcation phenomena in the system are also analyzed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The slack-taut state of tether is a particular Averse circumstance, which may influence the normal operation stale of tension leg platform (TLP). The dynamic responses of TLP with slack-taut tether are studied with consideration of several nonlinear factors introduced by large amplitude motions. The time histories of stresses of tethers of a typical TLP in slack-taut state are given. In addition, the sensitivities of slack to stiffness and mass are investigated by varying file stiffness of tether and mass of TLP. It is found that slack is sensitive to the mass of TLP. The critical culled surfaces (over which indicates the slack) for the increase of mass are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.

In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.

The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.

We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.

An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.

Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.

The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.

Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.

Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.

An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For damaging response, the force-displacement relationship of a structure is highly nonlinear and history-dependent. For satisfactory analysis of such behavior, it is important to be able to characterize and to model the phenomenon of hysteresis accurately. A number of models have been proposed for response studies of hysteretic structures, some of which are examined in detail in this thesis. There are two popular classes of models used in the analysis of curvilinear hysteretic systems. The first is of the distributed element or assemblage type, which models the physical behavior of the system by using well-known building blocks. The second class of models is of the differential equation type, which is based on the introduction of an extra variable to describe the history dependence of the system.

Owing to their mathematical simplicity, the latter models have been used extensively for various applications in structural dynamics, most notably in the estimation of the response statistics of hysteretic systems subjected to stochastic excitation. But the fundamental characteristics of these models are still not clearly understood. A response analysis of systems using both the Distributed Element model and the differential equation model when subjected to a variety of quasi-static and dynamic loading conditions leads to the following conclusion: Caution must be exercised when employing the models belonging to the second class in structural response studies as they can produce misleading results.

The Massing's hypothesis, originally proposed for steady-state loading, can be extended to general transient loading as well, leading to considerable simplification in the analysis of the Distributed Element models. A simple, nonparametric identification technique is also outlined, by means of which an optimal model representation involving one additional state variable is determined for hysteretic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.