909 resultados para Multidimensional Scaling
Resumo:
Organismal metabolic rates influence many ecological processes, and the mass-specific metabolic rate of organisms decreases with increasing body mass according to a power law. The exponent in this equation is commonly thought to be the three-quarter-power of body mass, determined by fundamental physical laws that extend across taxa. However, recent work has cast doubt as to the universality of this relationship, the value of 0.75 being an interspecies 'average' of scaling exponents that vary naturally between certain boundaries. There is growing evidence that metabolic scaling varies significantly between even closely related species, and that different values can be associated with lifestyle, activity and metabolic rates. Here we show that the value of the metabolic scaling exponent varies within a group of marine ectotherms, chitons (Mollusca: Polyplacophora: Mopaliidae), and that differences in the scaling relationship may be linked to species-specific adaptations to different but overlapping microhabitats. Oxygen consumption rates of six closely related, co-occurring chiton species from the eastern Pacific (Vancouver Island, British Columbia) were examined under controlled experimental conditions. Results show that the scaling exponent varies between species (between 0.64 and 0.91). Different activity levels, metabolic rates and lifestyle may explain this variation. The interspecific scaling exponent in these data is not significantly different from the archetypal 0.75 value, even though five out of six species-specific values are significantly different from that value. Our data suggest that studies using commonly accepted values such as 0.75 derived from theoretical models to extrapolate metabolic data of species to population or community levels should consider the likely variation in exponents that exists in the real world, or seek to encompass such error in their models. This study, as in numerous previous ones, demonstrates that scaling exponents show large, naturally occurring variation, and provides more evidence against the existence of a universal scaling law. © 2012 Elsevier B.V.
Resumo:
As awareness of the limitations of relying solely on income to measure poverty has become more widespread, attention has been increasingly focused on multi-dimensional approaches, to the point where the EU has adopted a multidimensional poverty and social exclusion target for 2020. The rationale advanced is that the computation of a multidimensional poverty index is an effective way of communicating in a political environment, and a necessary tool in order to monitor 27 different national situations. By contrast with the rather ad hoc way in which the EU 2020 poverty target has been framed and rationalised, the adjusted head count ratio applied here has a number of desirable axiomatic properties. It constitutes a significant improvement on union and intersection approaches and allows for the decomposition of multidimensional poverty in terms of dimensions of deprivation and socio-economic attributes. Since understanding poverty as multidimensional does not necessarily require constructing a multidimensional poverty index, on the basis of our analysis we provide a more general consideration of the value of developing a multidimensional index of poverty for the European Union.
Resumo:
In this paper, a novel method for modelling a scaled vehicle–barrier crash test similar to the 20◦ angled barrier test specified in EN 1317 is reported. The intended application is for proof-of-concept evaluation of novel roadside barrier designs, and as a cost-effective precursor to full-scale testing or detailed computational modelling. The method is based on the combination of the conservation of energy law and the equation of motion of a spring mass system representing the impact, and shows, for the first time, the feasibility of applying classical scaling theories to evaluation of roadside barrier design. The scaling method is used to set the initial velocity of the vehicle in the scaled test and to provide scaling factors to convert the measured vehicle accelerations in the scaled test to predicted full-scale accelerations. These values can then be used to calculate the Acceleration Severity Index score of the barrier for a full-scale test. The theoretical validity of the method is demonstrated by comparison to numerical simulations of scaled and full-scale angled barrier impacts using multibody analysis implemented in the crash simulation software MADYMO. Results show a maximum error of 0.3% ascribable to the scaling method.
Resumo:
Adolescence is a time of physical, social and emotional development, and this development can be accompanied by feelings of stress. The Adolescent Stress Questionnaire is a 56-item scale measuring stress in 10 domains. Developed in Australia, the scale has been translated, and its reliability and validity have been tested in a number of countries across Europe, where the 10-factor, 56-item version of the scale has received little support. The present study tested the factor structure, construct validity and reliability in a sample (n=610) of adolescents in the United Kingdom. Support was found for the 10-factor, 56-item version of the scale, and correlations with self-concept measures, sex scores on stress factors and Cronbach's α-values, suggesting that the scale may be a viable assessment tool for adolescent stress. Results for alcohol-specific analyses support the domain-specific nature of the scale. Future work may seek to investigate the stability of age-specific stress domains (e.g. the stress of Emerging Adult Responsibility) in samples that include younger adolescents.
Resumo:
This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, M, grows large, while the transmit power of each user can be scaled down proportionally to 1/M. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1/√M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.
Resumo:
Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on colocated or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas N. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today’s conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phasedrifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with N while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as p N, instead of linearly, by careful circuit-aware system design.
Resumo:
Today's multi-media electronic era is driven by the increasing demand for small multifunctional devices able to support diverse services. Unfortunately, the high levels of transistor integration and performance required by such devices lead to an unprecedented increase of on-chip power that significantly limits the battery lifetime and even poses reliability concerns. Several techniques have been developed to address the power increase, but voltage over-scaling (VOS) is considered to be one of the most effective ones due to the quadratic dependence of voltage on dynamic power consumption. However, VOS may not always be applicable since it increases the delay in all paths of a system and may limit high performance required by today's complex applications. In addition, application of VOS is further complicated since it increases the variations in transistor characteristics imposed by their tiny size which can lead to large delay and leakage variations, making it difficult to meet delay and power budgets. This paper presents a review of various cross-layer design options that can provide solutions for dynamic voltage over-scaling and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems. © 2011 IEEE.
Resumo:
The aim of this article is to discuss some consequences of placing the combating of discrimination and the promotion of equality among the principles of Community law. The focus is firstly on the ensuing widening of the scope of EU (gender) equality law and secondly on the increase of grounds of forbidden discrimination. In concluding, steps towards a multidimensional conception of equality law are proposed.
Resumo:
We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.
Resumo:
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.
Resumo:
EU equality law is multidimensional in being based on different rationales and concepts. Consequently, the concept of discrimination has become fragmented, with different instruments envisaging different scopes of protection. This raises questions as to the ability of EU law to address the situation of persons excluded on a number of grounds. This edited collection addresses the increasing complexity of European Equality Law from jurisprudential, sociological and political science perspectives. Internationally renowned researchers from Scandinavian, Continental and Central European countries and Britain analyse consequences of multiplying discrimination grounds within EU equality law, considering its multidimensionality and intersectionality. The contributors to the volume theorise the move from formal to substantive equality law and its interrelation to new forms of governance, demonstrating the specific combination of non-discrimination law with welfare state models which reveal the global implications of the European Union. The book will be of interest to academics and policy makers all over the world, in particular to those researching and studying law, political sciences and sociology with an interest in human rights, non discrimination law, contract and employment law or European studies.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of A3/4 representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO(2) and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to M-b, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.