848 resultados para MAGNESIUM-PORPHYRIN
Resumo:
Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^
Resumo:
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^
Resumo:
Magnesium borate hydroxide (MBH) nanowhiskers were synthesized using a one step hydrothermal process with different surfactants. The effect surfactants have on the structure and morphology of the MBH nanowhiskers has been investigated. The X-ray diffraction profile confirms that the as-synthesized material is of single phase, monoclinic MgBO2(OH). The variations in the size and shape of the different MBH nanowhiskers have been discussed based on the surface morphology analysis. The annealing of MBH nanowhiskers at 500 °C for 4 h has significant effect on the crystal structure and surface morphology. The UV–vis absorption spectra of the MBH nanowhiskers synthesized with and without surfactants show enhanced absorption in the low-wavelength region, and their optical band gaps were estimated from the optical band edge plots. The photoluminescence spectra of the MBH nanowhiskers produced with and without surfactants show broad emission band with the peak maximum at around 400 nm, which confirms the dominant contribution from the surface defect states.
Resumo:
Advances in biomaterials have enabled medical practitioners to replace diseased body parts or to assist in the healing process. In situations where a permanent biomaterial implant is used for a temporary application, additional surgeries are required to remove these implants once the healing process is complete, which increases medical costs and patient morbidity. Bio-absorbable materials dissolve and are metabolized by the body after the healing process is complete thereby negating additional surgeries for removal of implants. Magnesium alloys as novel bio-absorbable biomaterials, have attracted great attention recently because of their good mechanical properties, biocompatibility and corrosion rate in physiological environments. However, usage of Mg as biodegradable implant has been limited by its poor corrosion resistance in the physiological solutions. An optimal biodegradable implant must initially have slow degradation to ensure total mechanical integrity then degrade over time as the tissue heals. The current research focuses on surface modification of Mg alloy (MZC) by surface treatment and polymer coating in an effort to enhance the corrosion rate and biocompatibility. It is envisaged that the results obtained from this investigation would provide the academic community with insights for the utilization of bio-absorbable implants particularly for patients suffering from atherosclerosis. The alloying elements used in this study are zinc and calcium both of which are essential minerals in the human metabolic and healing processes. A hydrophobic biodegradable co-polymer, polyglycolic-co-caprolactone (PGCL), was used to coat the surface treated MZC to retard the initial degradation rate. Two surface treatments were selected: (a) acid etching and (b) anodization to produce different surface morphologies, roughness, surface energy, chemistry and hydrophobicity that are pivotal for PGCL adhesion onto the MZC. Additionally, analyses of biodegradation, biocompatibility, and mechanical integrity were performed in order to investigate the optimum surface modification process, suitable for biomaterial implants. The study concluded that anodization created better adhesion between the MZC and PGCL coating. Furthermore, PGCL coated anodized MZC exhibited lower corrosion rate, good mechanical integrity, and better biocompatibility as compared with acid etched.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
Copyright © 2015. Published by Elsevier Ireland Ltd.
Resumo:
Significant advances in understanding the fundamental photophysical behavior of single-walled carbon nanotubes (SWNTs) have been made possible by the development of ionic, conjugated aryleneethynylene polymers that helically wrap SWNTs with well-defined morphology. My contribution to this work was the design and synthesis of porphyrin-containing polymers and the photophysical investigation of the corresponding polymer-wrapped SWNTs. For these new constructs, the polymer acts as more than just a solubilization scaffold; such assemblies can provide benchmark data for evaluating spectroscopic signatures of energy and charge transfer events and lay the groundwork for further, rational development of polymers with precisely tuned redox properties and electronic coupling with the underlying SWNT. The first design to incorporate a zinc porphyrin into the polymer backbone, PNES-PZn, suffered from severe aggregation in solution and was redesigned to produce the porphyrin-containing polymer S-PBN-PZn. This polymer was utilized to helically wrap chirality-enriched (6,5) SWNTs, which resulted in significant quenching of the porphyrin-based fluorescence. Time-resolved spectroscopy revealed a simultaneous rise and decay of the porphyrin radical cation and SWNT electron polaron spectroscopic signatures indicative of photoinduced electron transfer. A new polymer, S-PBN(b)-Ph2PZn3, was then synthesized which incorporated a meso-ethyne linked zinc porphyrin trimer. By changing the absorption profile and electrochemical redox potentials of the polymer, the photophysical behavior of the corresponding polymer-wrapped (6,5)-SWNTs was dramatically changed, and the polymer-wrapped SWNTs no longer showed evidence for photoinduced electron transfer.
Resumo:
The Ran GTPase protein is a guanine nucleotide-binding protein (GNBP) with an acknowledged profile in cancer onset, progression and metastases. The complex mechanism adopted by GNBPs in exchanging GDP for GTP is an intriguing process and crucial for Ran viability. The successful completion of the process is a fundamental aspect of propagating downstream signalling events. QM/MM molecular dynamics simulations were employed in this study to provide a deeper mechanistic understanding of the initiation of nucleotide exchange in Ran. Results indicate significant disruption of the metal-binding site upon interaction with RCC1 (the Ran guanine nucleotide exchange factor), overall culminating in the prominent shift of the divalent magnesium ion. The observed ion drifting is reasoned to occur as a consequence of the complex formation between Ran and RCC1 and is postulated to be a critical factor in the exchange process adopted by Ran. This is the first report to observe and detail such intricate dynamics for a protein in Ras superfamily.
Resumo:
We experimentally tested a series of synthetic calcite marbles with varying amounts of dissolved magnesium in a standard triaxial deformation machine at 300 MPa confining pressure, temperatures between 700 and 850°C, stresses between 2 and 100 MPa, and strain rates between 10−7 and 10−3 s−1. The samples were fabricated by hot isostatic pressing of a mixture of calcite and dolomite at 850°C and 300 MPa. The fabrication protocol resulted in a homogeneous, fine-grained high-magnesian calcite aggregate with minimal porosity and with magnesium contents between 0.07 and 0.17 mol% MgCO3. At stresses below 40 MPa the samples deformed with linear viscosity that depended inversely on grain size to the 3.26±0.51 power, suggesting that the mechanisms of deformation were some combination of grain boundary diffusion and grain boundary sliding. Because small grain sizes tended to occur in the high-magnesium calcite, the strength also appeared to vary inversely with magnesium content. However, the strength at constant grain size does not depend on the amount of dissolved magnesium, and thus, the impurity effect seems to be indirect. At stresses higher than 40 MPa, the aggregates become non-linearly viscous, a regime we interpret to be dislocation creep. The transition between the two regimes depends on grain size, as expected. The activation energy for diffusion creep is 200±30 kJ/mol and is quite similar to previous measurements in natural and synthetic marbles deformed at similar conditions with no added magnesium.
Resumo:
In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.