987 resultados para MACROSCOPIC QUANTUM PHENOMENA IN MAGNETIC SYSTEMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spin-dependent electron transport in a special magnetic-electric superlattice periodically modulated by parallel ferromagnetic metal stripes and Schottky normal-metal stripes. The results show that, the spin-polarized current can be well controllable by modulating the magnetic strength of the ferromagnetic stripes or the voltage applied to the Schottky normal-metal stripes. It is obvious that, to the system of the magnetic superlattice, the polarized current can be enhanced by the magnetic strength of ferromagnetic stripes. Nevertheless, it is found that, for the magnetic-electric superlattice, the polarized current can also be remarkably advanced by the voltage applied to the Schottky normal-metal stripes. These results may indicate a useable approach for tunable spintronic devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport phenomena in radial flow metalorganic chemical vapor deposition (MOCVD) reactor with three concentric vertical inlets are studied by two-dimensional numerical modeling. By varying the parameters such as gas pressure, flow rates combination of multi-inlets, geometric shapes and sizes of reactor and flow distributor, temperatures of susceptor and ceiling, and susceptor rotation, the corresponding velocity, temperature, and concentration fields inside the reactor are obtained; the onset and change of flow recirculation cells under influences of those parameters are determined. It is found that recirculation cells, originated from flow separation near the bend of reactor inlets, are affected mainly by the reactor height and shape, the operating pressure, the flow rates combination of multi-inlets, and the mean temperature between susceptor and ceiling. By increasing the flow rate of mid-inlet and the mean temperature, decreasing the pressure, maintaining the reactor height below certain criteria, and trimming the bends of reactor wall and flow distributor to streamlined shape, the recirculation cells can be minimized so that smooth and rectilinear flow prevails in the susceptor region, which corresponds to smooth and rectilinear isotherms and larger reactant concentration near the susceptor. For the optimized reactor shape, the reactor size can be enlarged to diameter D = 40 cm and height H = 2 cm without flow recirculation. The susceptor rotation over a few hundred rpm around the reactor central axis will induce the recirculation cell near the exit and deflect the streamlines near the susceptor, which is not the case for vertical reactors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selectively photo-excited C-V spectroscopy has been measured in an In0.5Ga0.5As quantum dots (QDs)-embedded, three barrier-two well heterostructure. By comparing with a theoretical capacitance model, the pure capacitive contribution from In0.5Ga0.5As QDs, due to tunnelling coupling between In0.5Ga0.5As QDs and In0.18Ga0.82As quantum well, has been used to obtain the density of charges from photo-excited In0.5Ga0.5As QDs in a very straightforward manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental results show that the exchange coupling field (H-ex) of NiFe/FeMn for Ta/NiFe/FeMn/Ta multilayers is higher than that for spin-valve multilayers Ta/NiFe/Cu/NiFe/FeMn/Ta. X-ray photoelectron spectroscopy shows that Cu atoms segregate to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers. While studying Ta/X(X=Bi,Pb,Ag,In)/NiFe/FeMn multilayers, we also find that X atoms segregate to the NiFe/FeMn interface, which results in a decrease of the H-ex. However, a small amount of Bi, Pb, etc. deposited between Cu and pinned NiFe layer for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers can increase H-ex. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta is often used as a buffer layer in magnetic multilayers. In this study, Ta/Ni81Fe19/Ta multilayers were deposited by magnetron sputtering on sing-crystal Si with a 300-nm-thick SiO2 film. The composition and chemical states at the interface region of SiO2/Ta were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an 'inter-mixing layer" at the SiO2/Ta interface due to a thermodynamically favorable reaction: 15 SiO2 + 37 Ta = 6 Ta2O5 + 5 Ta5Si3. Therefore, the Ta buffer layer thickness used to induce NiFe (111) texture increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to characterize the oxidation states in Ta/NiOx/Ni-81/Fe-19/Ta magnetic multilayers prepared by rf reaction and dc magnetron sputtering. The exchange coupling field and the coercivity of NiOx/Ni81Fe19 are studied as a function of the ratio of Ar to O-2 during the deposition process. The chemical states of Ni atoms in the interface region of NiOx/NiFe have also been investigated by x-ray photoelectron spectroscopy and the peak decomposition technique. The results show that the ratio of Ar to O-2 has a great effect on the chemical states of nickel in NiOx films. Thus the exchange coupling field and the coercivity of Ta/NiOx/Ni81Fe19/Ta are seriously affected. Also, the experiment shows that x-ray photoelectron spectroscopy is a powerful tool in characterizing magnetic multilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoluminescence (PL) of CdSexS1-x semiconductor quantum dots (QDs) in a glass spherical microcavity is investigated. The CdSexS1-x semiconductor clusters embedded in a glass matrix are fabricated by using the heat treatment method. Periodical structures consisting of sharp spectral lines are observed in the PL spectra of CdSexS1-x QDs, which can be well explained by the coupling with the whispering gallery modes of the spherical microcavity based on Mie scattering theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated random telegraph noise in the photoluminescence from InGaAs quantum dots in GaAs. Dots switching among two and three levels have been measured. The experiments show that the switching InGaAs dots behave very similarly to switching InP dots in GaInP. but differently from the more commonly investigated colloidal dots. The switching is attributed to defects, and we show that the switching can be used as a monitor of the defect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new algorithm, representing an important advance in determination of the functional relationship, is first reported here. The algorithm is very useful and convenient for analyzing the incorporation of impurities. To show how the algorithm works, two early and well-known vapor phase epitaxy (VPE) experiments-Ashen's (Ashen, D. J.; Dean, P. J.; Hurle, D. T. J.; Mullin, J. B.; Royle, A.; White, A. M. Gallium Arsenide and Related Compounds, Institute of Physics Conference Series 24, 1974; Institute of Physics: London, 1975; p 229.), involving the doping of silicon and DiLorenzo's (DiLorenzo, J. V. J. Cryst. Growth 1972, 17, 189.), involving the mole fraction effect-are calculated to find the functional relationship between the Si contamination and the partial pressure of HCl. The calculated curves agree with the experimental results. A conclusion that the calculated values are greater than the true values has been drawn.