952 resultados para Low-resistance contacts
Resumo:
Background: Relationships between low-density lipoprotein cholesterol and endothelial function in hemodialysis patients have yet to be investigated. Furthermore, current reporting of endothelial function data using flow-mediated dilatation has recognised limitations. The aims of the study were to determine the relationship between low-density lipoproteins and endothelial function in hemodialysis patients and to investigate the validity of determining the area under the curve for data collected during the flow-mediated dilatation technique. Methods: Brachial artery responses to reactive hyperemia (endothelial-dependent) and glyceryl trinitrate (endothelial-independent) were assessed in 19 hemodialysis patients using high-resolution ultrasound. Lipid profiles and other factors known to effect brachial artery reactivity were also measured prior to the flow-mediated dilatation technique. Results: There were no significant relationships between serum low-density lipoproteins and endothelial-dependent or -independent vasodilation using absolute change (mm), relative change (%), time to peak change (s) or area under the curve (mm(.)s). In hemodialysis patients with atherosclerosis, area under the curve analysis showed a significantly (p < 0.05) decreased endothelial-dependent response (mean +/- S.D.: 19.2 +/- 17.4) compared to non-atherosclerotic patients (42.3 +/- 28.6). However, when analysing these data using absolute change, relative change or time to peak dilatation, there were no significant differences between the two groups. Conclusions: In summary, there was no relationship between low-density lipoproteins and endothelial function in hemodialysis patients. In addition, area under the curve analysis of flow-mediated vasodilatation data may be a useful method of determining the temporal vascular response during the procedure. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In contrast to the well-established relationship between cadherins and the actin cytoskeleton, the potential link between cadherins and microtubules (MTs) has been less extensively investigated. We now identify a pool of MTs that extend radially into cell-cell contacts and are inhibited by manoeuvres that block the dynamic activity of MT plus-ends (e.g. in the presence of low concentrations of nocodazole and following expression of a CLIP-170 mutant). Blocking dynamic MTs perturbed the ability of cells to concentrate and accumulate E-cadherin at cell-cell contacts, as assessed both by quantitative immunofluorescence microscopy and fluorescence recovery after photobleaching (FRAP) analysis, but did not affect either transport of E-cadherin to the plasma membrane or the amount of E-cadherin expressed at the cell surface. This indicated that dynamic MTs allow cells to concentrate E-cadherin at cell-cell contacts by regulating the regional distribution of E-cadherin once it reaches the cell surface. Importantly, dynamic MTs were necessary for myosin II to accumulate and be activated at cadherin adhesive contacts, a mechanism that supports the focal accumulation of E-cadherin. We propose that this population of MTs represents a novel form of cadherin-MT cooperation, where cadherin adhesions recruit dynamic MTs that, in turn, support the local concentration of cadherin molecules by regulating myosin II activity at cell-cell contacts.
Resumo:
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Resumo:
Aims: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. Methods and Results: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other Gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. Conclusions: AlbF is the first apparent single-component antibiotic-specific efflux pump from a Gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. Significance and Impact of the Study: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.
Resumo:
Treatment of schizophrenia with olanzapine and other atypical antipsychotic agents is associated with insulin resistance and diabetes mellitus. The mechanism for this is not understood. Adiponectin is an insulin-sensitizing cytokine secreted by adipocytes. It is present in serum in multimers of varying size. Trimers and hexamers are referred to as low molecular weight (LMW) adiponectin. Larger multimers (12-, 18-, and 24-mers) have been designated high molecular weight (HMW) adiponectin and seem responsible for the insulin-sensitizing action of this adipokine. The aim of this study was to examine total adiponectin and LMW and HMW multimers in serum from patients with schizophrenia treated with either olanzapine (n = 9) or other typical antipsychotics (n = 9) and compare results with 16 healthy sex-, body mass index-, and age-matched controls. The effects of olanzapine on adiponectin protein expression and secretion in in vitro-differentiated primary human adipocytes were also examined. Patients receiving olanzapine had significantly lower total serum adiponectin as compared with those on conventional treatment and controls (5.23 +/- 1.53 ng/mL vs. 8.20 +/- 3.77 ng/mL and 8.78 +/- 3.8 ng/mL; P < 0.05 and P < 0.01, respectively). The HMW adiponectin was also reduced in patients on olanzapine as compared with the disease and healthy control groups (1.67 +/- 0.96 ng/mL vs. 3.87 +/- 2.69 ng/mL and 4.07 +/- 3.2 ng/mL; P < 0.05 for both). The LMW adiponectin was not different between patient groups (P = 0.15) but lower in patients on olanzapine as compared with controls (3.56 +/- 10.85 ng/mL vs. 4.70 +/- 1.4 ng/mL; P < 0.05). In vitro, short duration (up to 7 days) olanzapine exposure had no effect on total adiponectin expression or multimer composition of secreted protein. In summary, this study demonstrates a correlation between olanzapine treatment and reduced serum adiponectin, particularly HMW multimers. This may not be a direct effect of olanzapine on adipocyte expression or secretion of adiponectin. These observations provide insights into possible mechanisms for the association between olanzapine treatment and insulin resistance.
Resumo:
Biological detergents are now routinely used in domestic laundry because the enzymes they contain provide the added benefit of low temperature washes with improved cleaning performance. One of the key enzymes found in these detergents are proteases, which if exposed to natural protein fibres such as wool or silk can cause irreversible damage, leading to loss of fabric strength, shape and poor colour fastness. Transglutaminases (TGases) are protein cross-linking enzymes capable of adding tensile strength to wool proteins, and as a consequence are capable of remediating the damage caused by previous chemical treatments, and more importantly, by proteases. In this paper we treated dyed wool fabric with TGase and then washed the fabric with biological and non-biological detergents to investigate whether TGases would protect wool garments from damage by the undue use of biological detergents in domestic laundry. We demonstrate using different cycles of detergent washes containing biological and non-biological detergents and different TGase treatments, that wool fabric treated previously with TGase release less dye into the washing liquor and in addition maintain fabric strength at levels greater than the washed controls. As a consequence, wool garments previously treated with TGase are likely to have increased resistance to domestic washing and thus provide increased longevity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. Methods: We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. Results: A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. Conclusions: Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve ?-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis.
Resumo:
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.
Resumo:
The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.
Resumo:
The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.
Resumo:
There is an urgent need for fast, non-destructive and quantitative two-dimensional dopant profiling of modern and future ultra large-scale semiconductor devices. The low voltage scanning electron microscope (LVSEM) has emerged to satisfy this need, in part, whereby it is possible to detect different secondary electron yield values (brightness in the SEM signal) from the p-type to the n-type doped regions as well as different brightness levels from the same dopant type. The mechanism that gives rise to such a secondary electron (SE) contrast effect is not fully understood, however. A review of the different models that have been proposed to explain this SE contrast is given. We report on new experiments that support the proposal that this contrast is due to the establishment of metal-to-semiconductor surface contacts. Further experiments showing the effect of instrument parameters including the electron dose, the scan speeds and the electron beam energy on the SE contrast are also reported. Preliminary results on the dependence of the SE contrast on the existence of a surface structure featuring metal-oxide semiconductor (MOS) are also reported. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.
Resumo:
Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.
Resumo:
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.