975 resultados para KNOCKOUT
Resumo:
Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.
Resumo:
Summary Inorganic phosphate (Pi) is a main limiting nutrient to the growth and production yield of plants in many agro-ecosystems. Plants have evolved a series of metabolic and developmental adaptations to cope with low Pi availability. PH01 has been identified as a protein involved in the loading of Pi into the xylem of roots in Arabidopsis. In this study, the PHO1 gene family in both higher plant Arabidopsis and lower plant Physcomitrella was characterized. Additional ten PHO1 homologues in Arabidopsis and three homologues in Physcomitrella were identified. All proteins harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the highly conserved C-terminal hydrophobic portion. RT-PCR analysis of the Arabidopsis PHO1 genes revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers, indicating their potential roles not only in Pi transport but also in Pi homeostasis within the Arabidopsis plant. The regulation of gene expression by different nutrient-starvations showed that some genes are strongly up-regulated by elements other than Pi, e.g. by NO3, Mg, and Zn starvation. Northern blot and RT-PCR analysis showed distinct expression patterns of the three Physcomitrella PHO1 genes. The investigation of Pi starvation effects on some Pi-deprivation responsive genes demonstrates that Physcomitrella has evolved a similar mechanism as higher plants to respond to Pi deficiency. Promoter activity analysis for the Physcomitrella PHO1 family genes using promoter-GUS fusions revealed their expression in protonemata and gametophores but at different levels and with different patterns, suggesting these genes may play distinct roles in Pi transport and/or Pi homeostasis in the moss plant. Single knockout mutants of the three genes were generated by gene targeting and one of them displayed a reduced Pi content in the protonemata under Pi starvation. The evolution of the PHO1 family in land plants was also discussed. Together, these findings indicate that the PHO1 family genes, present in a broad range of plant species from lower plants to flowering plants, play important roles in Pi transport and homeostasis. Résumé Le phosphate inorganique (Pi) est un nutriment essentiel à la croissance des plantes et au rendement de la production végétale. Dans beaucoup d'agro-écosystèmes, ce nutriment est limitant. Les plantes ont développé des adaptations métaboliques et développementales pour palier à la faible disponibilité du Pi. Il a été démontré que la protéine PHOI est indispensable au transfert du Pi dans le xylème des racines d' Arabidopsis. Cette étude porte sur la famille de gènes définie par PHO1 ; ceci, dans deux organismes modèles : la plante Arabidopsis pour les végétaux supérieurs, et la mousse Physcomitrella pour les végétaux inférieurs. Dix homologues à PHOI dans Arabidopsis et trois homologues dans Physcomitrella ont été identifiés. Toutes les protéines encodées présentent un domaine tripartite SPX dans leur partie N terminale hydrophile et un domaine EXS dans la partie C terminale hydrophobe hautement conservée d'entre eux. L'analyse par RT-PCR de l'expression des gènes PHO1 dans Arabidopsis révèle une expression ectopique pour la plupart, à l'exception de deux gènes dont l'expression est uniquement florale ; ceci suggère l'implication de cette famille non seulement dans le transport mais aussi dans l'homéostasie du Pi dans Arabidopsis. L'observation de l'expression de ces gènes en fonction de l'absence de différents nutriments montre que certains gènes sont fortement régulés lors de carences en NO3, Mg et Zn. L'analyse par northern blot et RT-PCR met en évidence des profils d'expression distincts pour les trois gènes de Physcomitrella. Les effets de la carence en Pi sur Physcomitrella ont été étudiés par le biais de gènes dépendants connus pour Arabidopsis, les résultats suggèrent un mode de réponse à cette carence conservé entre les végétaux inférieurs et supérieurs. La localisation tissulaire de l'expression de la famille PHO1 dans la mousse a été étudiée au moyen du gène rapporteur GUS fusionné aux différents promoteurs. Ceci a révélé leur expression dans les protonemata et les gametophores, mais à des intensités et avec des profils différents, ce qui suggère des implications distinctes dans le transport et/ou l'homéostasie du Pi dans la mousse. Des simples mutants knockout ont été générés pour chaque gène de mousse ; l'un d'eux présente une diminution du contenu protonemal en Pi lorsque soumis à une carence en Pi. L'évolution de la famille PHO1 dans les plantes terrestres est également discutée. Ensemble, ces résultats indiquent que les gènes de la famille PHO1 sont présents dans une large gamme de plantes allant des végétaux inférieurs aux supérieurs, et cette étude démontre que leur conservation se justifie potentiellement par le fait qu'ils sont probablement impliqués dans des mécanismes conservés de transport et d'homéostasie du Pi.
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.
Resumo:
Notch1 proteins are involved in binary cell fate decisions. To determine the role of Notch1 in the differentiation of CD4(+) Th1 versus Th2 cells, we have compared T helper polarization in vitro in naive CD4(+) T cells isolated from mice in which the N1 gene is specifically inactivated in all mature T cells. Following activation, Notch1-deficient CD4(+) T cells transcribed and secreted IFN-gamma under Th1 conditions and IL-4 under Th2 conditions at levels similar to that of control CD4(+) T cells. These results show that Notch1 is dispensable for the development of Th1 and Th2 phenotypes in vitro. The requirement for Notch1 in Th1 differentiation in vivo was analyzed following inoculation of Leishmania major in mice with a T cell-specific inactivation of the Notch1 gene. Following infection, these mice controlled parasite growth at the site of infection and healed their lesions. The mice developed a protective Th1 immune response characterized by high levels of IFN-gamma mRNA and protein and low levels of IL-4 mRNA with no IL-4 protein in their lymph node cells. Taken together, these results indicate that Notch1 is not critically involved in CD4(+) T helper 1 differentiation and in resolution of lesions following infection with L. major.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.
Resumo:
Akt/protein kinase B (PKB) plays a critical role in the regulation of metabolism, transcription, cell migration, cell cycle progression, and cell survival. The existence of viable knockout mice for each of the three isoforms suggests functional redundancy. We generated mice with combined mutant alleles of Akt1 and Akt3 to study their effects on mouse development. Here we show that Akt1-/- Akt3+/- mice display multiple defects in the thymus, heart, and skin and die within several days after birth, while Akt1+/- Akt3-/- mice survive normally. Double knockout (Akt1-/-) Akt3-/-) causes embryonic lethality at around embryonic days 11 and 12, with more severe developmental defects in the cardiovascular and nervous systems. Increased apoptosis was found in the developing brain of double mutant embryos. These data indicate that the Akt1 gene is more essential than Akt3 for embryonic development and survival but that both are required for embryo development. Our results indicate isoform-specific and dosage-dependent effects of Akt on animal survival and development.
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647-672, 2013.
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.
Resumo:
Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.
Resumo:
The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.
Resumo:
BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
Resumo:
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.
Resumo:
Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.