986 resultados para Joint biofuels production system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to evaluate energy indicators of a new production system of yellow passion fruit in Marilia-SP. Analyzed the inputs of the biological energy, fossil and industrial and output energy in the form of fruits produced per unit area as well as five energy indicators. The input energy amounted 155,810.13MJ ha(-1). Chemical fertilizers and pesticides accounted for 71% and 24% of indirect energy industry, respectively. The activity generated per cycle / ha, 587.700.00MJ, and cultural productivity 0.19MJ kg(-1). The efficiency culture was 3.77. The cultural energy net totaled 431,889.87MJ ha(-1). The energy efficiency (4.17) and energy balance (550,312.91MJ ha(-1)) was favorable. It was concluded that the direct energy consumption from fossil fuels, even though significant, yet permits the production of the fruit of an environmentally sustainable manner. Chemical fertilizers and pesticides were the most representative of indirect energy industry due to the intensification of fertilization as a means of disease prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was carried out to evaluate the agronomic and technological performance of common-bean crop following three straw mulch production system (sole corn, corn-Urochloa ruziziensis inter-crop and sole U. ruziziensis) and topdressing nitrogen fertilization (0, 40, 80, 120 and 160 kg ha(-1) of N) in the fourth year after the no-tillage system implementation. A randomized block design, in a splitplot array, with three replications was used. The use of U. ruziziensis intercropped with maize allowed a greater straw mulch formation and a more adequate coverage of the soil surface aiming the beans cultivation in succession. The nitrogen fertilization influenced the common-bean productivity in succession to U. ruziziensis unique and maize intercropped with U. ruziziensis. The common-bean crop in succession to the straw mulch production system with U. ruziziensis allowed higher grain production and sieve yield. The grain cooking time decreased due to the rates of N used in the dry bean crop in succession of maize exclusive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the seed production system, genetic purity is one of the fundamental requirements for its commercialization. The present work had the goal of determined the sample size for genetic purity evaluation, in order to protect the seed consumer and the producer and to evaluate the sensitivity of microsatellite technique for discriminating hybrids from their respective relatives and for detecting mixtures when they are present in small amounts in the samples. For the sequential sampling, hybrid seeds were marked and mixed in with the seed lots, simulating the following levels of contamination: 0.25, 0.5, 1.0, 2.0, 4.0, and 6.0%. After this, groups of 40 seeds were taken in sequence, up to a maximum of 400 seeds, with the objective of determining the quantity of seeds necessary to detect the percentage of mixture mentioned above. The sensitivity of microsatellite technique was evaluated by mixing different proportions of DNA from the hybrids with their respective seed lines. For the level of mixture was higher than 1:8 (1P1:8P2; 8P1:1P2), the sensitivity of the marker in detecting different proportions of the mixture varied according to the primer used. In terms of the sequential sampling, it was verified that in order to detect mixture levels higher than 1% within the seed lot- with a risk level for both the producer and the consumer of 0.05- the size of the necessary sample was smaller than the size needed for the fixed sample size. This also made it possible to reduce costs, making it possible to use microsatellites to certify the genetic purity of corn seeds lots.