760 resultados para Intuitionistic Fuzzy sets
Resumo:
X. Fu and Q. Shen. 'Knowledge representation for fuzzy model composition', in Proceedings of the 21st International Workshop on Qualitative Reasoning, 2007, pp. 47-54. Sponsorship: EPSRC
Resumo:
Q. Shen. Rough feature selection for intelligent classifiers. LNCS Transactions on Rough Sets, 7:244-255, 2007.
Resumo:
Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
K. Rasmani and Q. Shen. Data-driven fuzzy rule generation and its application for student academic performance evaluation. Applied Intelligence, 25(3):305-319, 2006.
Resumo:
M. Galea and Q. Shen. Iterative vs Simultaneous Fuzzy Rule Induction. Proceedings of the 14th International Conference on Fuzzy Systems, pages 767-772.
Resumo:
K. Rasmani and Q. Shen. Subsethood-based Fuzzy Rule Models and their Application to Student Performance Classification. Proceedings of the 14th International Conference on Fuzzy Systems, pages 755-760, 2005.
Resumo:
M. Galea, Q. Shen and J. Levine. Evolutionary approaches to fuzzy modelling. Knowledge Engineering Review, 19(1):27-59, 2004.
Resumo:
M. Galea and Q. Shen. FRANTIC - A system for inducing accurate and comprehensible fuzzy rules. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 136-143.
Resumo:
K. Rasmani and Q. Shen. Modifying weighted fuzzy subsethood-based rule models with fuzzy quantifiers. Proceedings of the 13th International Conference on Fuzzy Systems, pages 1679-1684, 2004
Resumo:
K. Rasmani and Q. Shen. Subsethood-based fuzzy modelling and classification. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 181-188.
Resumo:
M. Galea, Q. Shen and V. Singh. Encouraging Complementary Fuzzy Rules within Iterative Rule Learning. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 15-22.
Resumo:
M. Galea and Q. Shen. Simultaneous ant colony optimisation algorithms for learning linguistic fuzzy rules. A. Abraham, C. Grosan and V. Ramos (Eds.), Swarm Intelligence in Data Mining, pages 75-99.
Resumo:
Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1
Resumo:
R. Jensen, Q. Shen, Data Reduction with Rough Sets, In: Encyclopedia of Data Warehousing and Mining - 2nd Edition, Vol. II, 2008.