974 resultados para Insect-plant relationships
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
Purpose - Building project management (BPM) requires effective coordination and collaboration between multiple project team organisations which can be achieved by real time information flow between all participants. In the present scenario, this can be achieved by the use of information communication technologies (ICT). The purpose of this paper is to present part of a research project conducted to study the causal relationships between factors affecting ICT adoption for BPM by small and medium enterprises. Design/methodology/approach - This paper discusses structural equation modelling (SEM) analysis conducted to test the causal relationships between quantitative factors. Data for quantitative analysis were gathered through a questionnaire survey conducted in the Indian construction industry. Findings - SEM analysis results help in demonstrating that an increased and matured use of ICT for general administration within the organisation would lead to: an improved ICT infrastructure within the organisation; development of electronic databases; and a staff that is confident of using information technology (IT) tools. In such a scenario, staff would use advanced software and IT technologies for project management (PM) processes and that would lead to an increased adoption of ICT for PM processes. But, for general administration also, ICT adoption would be enhanced if the organisation is interacting more with geographically separated agencies and senior management perceives that significant benefits would accrue by adoption of ICT. All the factors are inter-related and their effect cannot be maximized in isolation. Originality/value - The results provide direction to building project managements for strategically adopting the effective use of ICT within their organisations and for BPM general.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
This workshop focuses upon research about the qualities of community in music and of music in community facilitated by technologically supported relationships. Generative media systems present an opportunity for users to leverage computational systems to form new relationships through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences for users with little formal musical or artistic expertise. This workshop examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensembles with very little musical knowledge or skill and offer the possibility of interactive relationships with artists and musical knowledge through collaborative performance. In this workshop we will focus on data that highlights how these simulated experiences might lead to understandings that may be of social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to evaluate purposively selected video artifacts that demonstrate different kinds of interactive relationship with artists, peers, and community and that enrich the sense of expressive self. Theoretical insights about meaningful engagement drawn from the longitudinal and cross cultural experiences will underpin the discussion and practical presentation.
Resumo:
The importance of collaboration for firm level innovation has been well established but much of the research focuses on large firms, with little research on small and medium enterprises. This paper investigates the links between product innovation and external collaboration and between future product innovation and past abandonment in small and medium sized firms, analysing data from 449 manufacturing firms, collected through the Australian Business Longitudinal Database. Our findings indicate firms that sought ideas or solutions from external network such as suppliers, or business partners reported higher level of new product introduction than firms that did not have any external collaboration. Further, firms with past abandonment experiences reported higher levels of new product introduction than firms that did not have such experience. Additionally, the findings indicated that firms with external collaboration were more likely to introduce new products even if they had previously experienced abandonment of a product innovation than firms without external collaboration. Implications, limitations and future research are outlined.
Resumo:
Factors that determine the epidemiology of Tobacco yellow dwarf virus (TbYDV), including alternative host plants and insect vector(s), were assessed over three consecutive growing seasons at four field sites in Northeastern Victoria in commercial tobacco growing properties. In addition, these factors were assessed for one growing season at three bean growing properties. Overall, 23 leafhopper species were identified at the 7 sites, with Orosius orientalis as the predominant leafhopper. Of the leafhoppers collected, only O. orientalis and Anzygina zealandica tested positive for TbYDV by polymerase chain reaction (PCR). The population dynamics of O. orientalis was assessed using sweep net sampling over three growing seasons and a trimodal distribution was observed. Despite large numbers of O. orientalis occurring early in the growing season (September–October), TbYDV was only detected in these leafhoppers between late November and end of January. The peaks in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and were associated with warmer temperatures and lower rainfall. Spatial and temporal distribution of vegetation at selected sites was determined using quadrat sampling. Of the 40 plant species identified, TbYDV was detected only in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. The proportion of host and non-host availability for leafhoppers was associated with climatic conditions.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
A simple mathematical model is presented to describe the cell separation process that plants undertake in order to deliberately shed organs. The focus here is on modelling the production of the enzyme polygalacturonase, which breaks down pectin that provides natural cell-to-cell adhesion in the localised abscission zone. A coupled system of three ordinary differential equations is given for a single cell, and then extended to hold for a layer of cells in the abscission zone. Simple observations are made based on the results of this preliminary model and, furthermore, a number of opportunities for applied mathematicians to make contributions in this subject area are discussed.
Resumo:
Social capital plays an important role in explaining how value is created from firms' network relationships, but little is understood about how social capital is shaped over time and how it is re-shaped when firms consolidate their network ties. In response, this study explores the evolution of social capital in buyer–supplier relationships through a case study of a company undertaking radical product innovation, and examines the corresponding changes in the firm's network of buyer–supplier relationships. The analysis shows that social capital is built in a decidedly non-linear and non-uniform manner. The study also reveals considerable interaction among the dimensions of social capital throughout the evolution of the firm's network, and emphasizes the importance of the cognitive dimension—a feature receiving little attention thus far. The evidence shows, too, that efforts to strengthen social capital need to increase when network ties are sacrificed to prevent unintended consequences for firms' longer-term value creation.
Resumo:
Tobacco yellow dwarf virus (TbYDV, family Geminiviridae, genus Mastrevirus) is an economically important pathogen causing summer death and yellow dwarf disease in bean (Phaseolus vulgaris L.) and tobacco (Nicotiana tabacum L.), respectively. Prior to the commencement of this project, little was known about the epidemiology of TbYDV, its vector and host-plant range. As a result, disease control strategies have been restricted to regular poorly timed insecticide applications which are largely ineffective, environmentally hazardous and expensive. In an effort to address this problem, this PhD project was carried out in order to better understand the epidemiology of TbYDV, to identify its host-plant and vectors as well as to characterise the population dynamics and feeding physiology of the main insect vector and other possible vectors. The host-plants and possible leafhopper vectors of TbYDV were assessed over three consecutive growing seasons at seven field sites in the Ovens Valley, Northeastern Victoria, in commercial tobacco and bean growing properties. Leafhoppers and plants were collected and tested for the presence of TbYDV by PCR. Using sweep nets, twenty-three leafhopper species were identified at the seven sites with Orosius orientalis the predominant leafhopper. Of the 23 leafhopper species screened for TbYDV, only Orosius orientalis and Anzygina zealandica tested positive. Forty-two different plant species were also identified at the seven sites and tested. Of these, TbYDV was only detected in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. Using a quadrat survey, the temporal distribution and diversity of vegetation at four of the field sites was monitored in order to assess the presence of, and changes in, potential host-plants for the leafhopper vector(s) and the virus. These surveys showed that plant composition and the climatic conditions at each site were the major influences on vector numbers, virus presence and the subsequent occurrence of tobacco yellow dwarf and bean summer death diseases. Forty-two plant species were identified from all sites and it was found that sites with the lowest incidence of disease had the highest proportion of monocotyledonous plants that are non hosts for both vector and the virus. In contrast, the sites with the highest disease incidence had more host-plant species for both vector and virus, and experienced higher temperatures and less rainfall. It is likely that these climatic conditions forced the leafhopper to move into the irrigated commercial tobacco and bean crop resulting in disease. In an attempt to understand leafhopper species diversity and abundance, in and around the field borders of commercially grown tobacco crops, leafhoppers were collected from four field sites using three different sampling techniques, namely pan trap, sticky trap and sweep net. Over 51000 leafhopper samples were collected, which comprised 57 species from 11 subfamilies and 19 tribes. Twentythree leafhopper species were recorded for the first time in Victoria in addition to several economically important pest species of crops other than tobacco and bean. The highest number and greatest diversity of leafhoppers were collected in yellow pan traps follow by sticky trap and sweep nets. Orosius orientalis was found to be the most abundant leafhopper collected from all sites with greatest numbers of this leafhopper also caught using the yellow pan trap. Using the three sampling methods mentioned above, the seasonal distribution and population dynamics of O. orientalis was studied at four field sites over three successive growing seasons. The population dynamics of the leafhopper was characterised by trimodal peaks of activity, occurring in the spring and summer months. Although O. orientalis was present in large numbers early in the growing season (September-October), TbYDV was only detected in these leafhoppers between late November and the end of January. The peak in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and was also associated with warmer temperatures and lower rainfall. To understand the feeding requirements of Orosius orientalis and to enable screening of potential control agents, a chemically-defined artificial diet (designated PT-07) and feeding system was developed. This novel diet formulation allowed survival for O. orientalis for up to 46 days including complete development from first instar through to adulthood. The effect of three selected plant derived proteins, cowpea trypsin inhibitor (CpTi), Galanthus nivalis agglutinin (GNA) and wheat germ agglutinin (WGA), on leafhopper survival and development was assessed. Both GNA and WGA were shown to reduce leafhopper survival and development significantly when incorporated at a 0.1% (w/v) concentration. In contrast, CpTi at the same concentration did not exhibit significant antimetabolic properties. Based on these results, GNA and WGA are potentially useful antimetabolic agents for expression in genetically modified crops to improve the management of O. orientalis, TbYDV and the other pathogens it vectors. Finally, an electrical penetration graph (EPG) was used to study the feeding behaviour of O. orientalis to provide insights into TbYDV acquisition and transmission. Waveforms representing different feeding activity were acquired by EPG from adult O. orientalis feeding on two plant species, Phaseolus vulgaris and Nicotiana tabacum and a simple sucrose-based artificial diet. Five waveforms (designated O1-O5) were observed when O. orientalis fed on P. vulgaris, while only four (O1-O4) and three (O1-O3) waveforms were observed during feeding on N. tabacum and the artificial diet, respectively. The mean duration of each waveform and the waveform type differed markedly depending on the food source. This is the first detailed study on the tritrophic interactions between TbYDV, its leafhopper vector, O. orientalis, and host-plants. The results of this research have provided important fundamental information which can be used to develop more effective control strategies not only for O. orientalis, but also for TbYDV and other pathogens vectored by the leafhopper.
Resumo:
ABSTR.4CT Senitivity of dot-immunobindinding ELf SA on nitrocellulose membrane (DotELISA)was compared with double-antibody sandwich ELISA (DAS-ELlSA) on polystyrene plates for the detection of bean yellow mosaic virus (BYMV), broad bean stain virus (WMV-2). Dot-ELISA was 2 and 1O times more sensitive than DAS-ELISA for the detection of BBSV and WMV-2, respectively, whereas DAS-ELISA was more sensitive than Dot-ELiSA for {he detection of BYMV. Both techniques were equally sensitive for the detection of BYDV. Using one day instead uf the two-day procedure, the four viruses were still detectable and the ralative sensitivity of both techniques remained the same.
Resumo:
The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
Resumo:
In the design studio learning environment, traditional student and staff expectations are of close contact teaching and learning. In recent years at QUT students have experienced reduced personal staff attention, and have increasingly felt “anonymous” and correspondingly disengaged, to the detriment of quality learning (Carbone 1998: 8; Biggs 2003). Concurrently, there has been a necessary increase in teaching by sessional staff at QUT with varied levels of experience and assurance. This paper outlines the first iteration of an action research project exploring whether changing the current QUT design studio student and staff relationships may lead to more engaged, dynamic learning environments. “Engagement” is understood as a primarily emotional, rather than operational student concern (Solomonides and Martin 2008; Austerlitz and Aravot 2007). The project inverted the standard QUT design studio teaching structure, and evaluated the new structure and activation of student engagement across four identified markers: attendance, participation, learning and performance (ACER 2009; NSSE 2005; Chapman 2003). Student and staff surveys and focus groups, corporate data, and informal feedback informed these evaluations. Overall, the results support the premise that when students and staff feel part of a reasonably-sized studio class with a dedicated lecturer and self-selected project, the majority are inclined to value these relationships, to feel actively engaged, and to experience some improvement in their learning and teaching performances.