974 resultados para Infinite.
Resumo:
This article proposes a three-timescale simulation based algorithm for solution of infinite horizon Markov Decision Processes (MDPs). We assume a finite state space and discounted cost criterion and adopt the value iteration approach. An approximation of the Dynamic Programming operator T is applied to the value function iterates. This 'approximate' operator is implemented using three timescales, the slowest of which updates the value function iterates. On the middle timescale we perform a gradient search over the feasible action set of each state using Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates, thus finding the minimizing action in T. On the fastest timescale, the 'critic' estimates, over which the gradient search is performed, are obtained. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is also presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are performed using the proposed algorithm. The results obtained are verified against classical value iteration where the feasible set is suitably discretized. Over such a discretized setting, a variant of the algorithm of [12] is compared and the proposed algorithm is found to converge faster.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
Equations proposed in previous work on the non-linear motion of a string show a basic disagreement, which is here traced to an assumption about the longitudinal displacement u. It is shown that it is neither necessary nor justifiable to assume that u is zero; and also that the velocity of propagation of u disturbances in a string is different from that in an infinite medium, although this difference is usually negligible. After formulating the exact equations of motion for the string, a systematic procedure is described for obtaining approximations to these equations to any order, making only the assumption that the strain in the material of the string is small. The lowest order equations in this scheme are non-linear, and are used to describe the response of a string near resonance. Finally, it is shown that in the absence of damping, planar motion of a string is always unstable at sufficiently high amplitudes, the critical amplitude falling to zero at the natural frequency and its subharmonics. The effect of slight damping on this instability is also discussed.
Resumo:
A three dimensional elasticity solution for the analysis of beams continuous over an infinite number of equally spaced supports has been given. The beam has been subjected to normal tractions on its two opposite faces and these loads are identical over each span. The other two faces are traction free. Numerical results have been given for different cases when the beam is loaded on its bottom face. The results obtained have been compared with the results of two dimensional elasticity solution.
Resumo:
It is shown that the systems of definite actions described by polar and axial tensors of the second rank and their combinations during the superposition of their elements of complete symmetry with the elements of complete symmetry of the "grey" cube, result in 11 cubic crystallographical groups of complete symmetry. There are 35 ultimate groups (i.e., the groups having the axes of symmetry of infinite order) in complete symmetry of finite figures. 14 out of these groups are ultimate groups of symmetry of polar and axial tensors of the second rank and 24 are new groups. All these 24 ultimate groups are conventional groups since they cannot be presented by certain finite figures possessing the axes of symmetry {Mathematical expression}. Geometrical interpretation for some of the groups of complete symmetry is given. The connection between complete symmetry and physical properties of the crystals (electrical, magnetic and optical) is shown.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.
Resumo:
Based on the Aristotelian criterion referred to as 'abductio', Peirce suggests a method of hypothetical inference, which operates in a different way than the deductive and inductive methods. “Abduction is nothing but guessing” (Peirce, 7.219). This principle is of extreme value for the study of our understanding of mathematical self-similarity in both of its typical presentations: relative or absolute. For the first case, abduction incarnates the quantitative/qualitative relationships of a self-similar object or process; for the second case, abduction makes understandable the statistical treatment of self-similarity, 'guessing' the continuity of geometric features to the infinity through the use of a systematic stereotype (for instance, the assumption that the general shape of the Sierpiński triangle continuates identically into its particular shapes). The metaphor coined by Peirce, of an exact map containig itself the same exact map (a map of itself), is not only the most important precedent of Mandelbrot’s problem of measuring the boundaries of a continuous irregular surface with a logarithmic ruler, but also still being a useful abstraction for the conceptualisation of relative and absolute self-similarity, and its mechanisms of implementation. It is useful, also, for explaining some of the most basic geometric ontologies as mental constructions: in the notion of infinite convergence of points in the corners of a triangle, or the intuition for defining two parallel straight lines as two lines in a plane that 'never' intersect.
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.