642 resultados para INSTABILITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683467]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Microbiological studies frequently involve exchanges of strains between laboratories and/or stock centers. The integrity of exchanged strains is vital for archival reasons and to ensure reproducible experimental results. For at least 50 years, one of the most common means of shipping bacteria was by inoculating bacterial samples in agar stabs. Long-term cultures in stabs exhibit genetic instabilities and one common instability is in rpoS. The sigma factor RpoS accumulates in response to several stresses and in the stationary phase. One consequence of RpoS accumulation is the competition with the vegetative sigma factor σ70. Under nutrient limiting conditions mutations in rpoS or in genes that regulate its expression tend to accumulate. Here, we investigate whether short-term storage and mailing of cultures in stabs results in genetic heterogeneity. Results We found that samples of the E. coli K-12 strain MC4100TF exchanged on three separate occasions by mail between our laboratories became heterogeneous. Reconstruction studies indicated that LB-stabs exhibited mutations previously found in GASP studies in stationary phase LB broth. At least 40% of reconstructed stocks and an equivalent proportion of actually mailed stock contained these mutations. Mutants with low RpoS levels emerged within 7 days of incubation in the stabs. Sequence analysis of ten of these segregants revealed that they harboured each of three different rpoS mutations. These mutants displayed the classical phenotypes of bacteria lacking rpoS. The genetic stability of MC4100TF was also tested in filter disks embedded in glycerol. Under these conditions, GASP mutants emerge only after a 3-week period. We also confirm that the intrinsic high RpoS level in MC4100TF is mainly due to the presence of an IS1 insertion in rssB. Conclusions Given that many E. coli strains contain high RpoS levels similar to MC4100TF, the integrity of such strains during transfers and storage is questionable. Variations in important collections may be due to storage-transfer related issues. These results raise important questions on the integrity of bacterial archives and transferred strains, explain variation like in the ECOR collection between laboratories and indicate a need for the development of better methods of strain transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead-based multiferroics perovskites with nominal compositions Pb(Fe1/2Nb1/2)O3 and Pb(Fe2/3W1/3)O3 were synthesized following a two-stage method. Magnetic proprieties were investigated and correlated to anelastic proprieties, measured by the conventional pulse-echo method. The discussions are focused in the region around 250 K, where magnetoelectroelastic instabilities have been observed. X-ray absorption nearedge structure (XANES) study further indicates that the edge position varies with temperature revealing a fluctuation on the valence of iron ions with the temperature, which can be related to a variation in anelastic and magnetic proprieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This type of methods typically creates rounded effects at flow boundaries, which usually do not coincide with object contours. A simple strategy to overcome this problem consists in inhibiting the diffusion at high image gradients. In this work, we first introduce a general framework for TV regularizers in optical flow and relate it with some standard approaches. Our survey takes into account several methods that use decreasing functions for mitigating the diffusion at image contours. Consequently, this kind of strategies may produce instabilities in the estimation of the optical flows. Hence, we study the problem of instabilities and show that it actually arises from an ill-posed formulation. From this study, it is possible to come across with different schemes to solve this problem. One of these consists in separating the pure TV process from the mitigating strategy. This has been used in another work and we demonstrate here that it has a good performance. Furthermore, we propose two alternatives to avoid the instability problems: (i) we study a fully automatic approach that solves the problem based on the information of the whole image; (ii) we derive a semi-automatic approach that takes into account the image gradients in a close neighborhood adapting the parameter in each position. In the experimental results, we present a detailed study and comparison between the different alternatives. These methods provide very good results, especially for sequences with a few dominant gradients. Additionally, a surprising effect of these approaches is that they can cope with occlusions. This can be easily achieved by using strong regularizations and high penalizations at image contours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]The Cape Verde Frontal Zone separates North and South Atlantic Central Waters in the eastern North Atlantic Subtropical Gyre. CTD-O2 and shipboard ADCP data from three hydrographic sections carried out in September 2003 are used to study the structure of the front. Results show the relation between spatial variations of water masses and currents, demonstrating the importance of advection in the distribution of water masses. Diapycnal diffusivities due to double diffusion and vertical shear instabilities are also estimated. Existence of competition between the two processes through the water column is shown. Depth-averaged diffusivities suggest that salt fingering dominates diapycnal mixing, except areas of purest South Atlantic Central Water. Here, double diffusion processes are weak and, consequently, shear of the flow is the main process. Results also show that strong mixing induced by vertical shear is associated with a large intrusion found near the front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]The aim of this work is to study several strategies for the preservation of flow discontinuities in variational optical flow methods. We analyze the combination of robust functionals and diffusion tensors in the smoothness assumption. Our study includes the use of tensors based on decreasing functions, which has shown to provide good results. However, it presents several limitations and usually does not perform better than other basic approaches. It typically introduces instabilities in the computed motion fields in the form of independent \textit{blobs} of vectors with large magnitude...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Domestic gas burners are investigated experimentally and numerically in order to further understand the fluid dynamics processes that drive the cooking appliance performances. In particular, a numerical simulation tool has been developed in order to predict the onset of two flame instabilities which may deteriorate the performances of the burner: the flame back and flame lift. The numerical model has been firstly validated by comparing the simulated flow field with a data set of experimental measurements. A prediction criterion for the flame back instability has been formulated based on isothermal simulations without involving the combustion modelization. This analysis has been verified by a Design Of Experiments investigation performed on different burner prototype geometries. On the contrary, the formulation of a prediction criterion regarding the flame lift instability has required the use of a combustion model in the numerical code. In this analysis, the structure and aerodynamics of the flame generated by a cooking appliance has thus been characterized by experimental and numerical investigations, in which, by varying the flow inlet conditions, the flame behaviour was studied from a stable reference case toward a complete blow-out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude to the sea. The great interest for this topic promoted a number of international projects such as: STEAM (Sediment Transport on European Atlantic Margins, 93-96), ENAM II (European North Atlantic Margin, 96-99), GITEC (Genesis and Impact of Tsunamis on the European Coast 92-95), STRATAFORM (STRATA FORmation on Margins, 95-01), Seabed Slope Process in Deep Water Continental Margin (Northwest Gulf of Mexico, 96-04), COSTA (Continental slope Stability, 00-05), EUROMARGINS (Slope Stability on Europe’s Passive Continental Margin), SPACOMA (04-07), EUROSTRATAFORM (European Margin Strata Formation), NGI's internal project SIP-8 (Offshore Geohazards), IGCP-511: Submarine Mass Movements and Their Consequences (05-09) and projects indirectly related to instability processes, such as TRANSFER (Tsunami Risk ANd Strategies For the European region, 06-09) or NEAREST (integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system, 06-09). In Italy, apart from a national project realized within the activities of the National Group of Volcanology during the framework 2000-2003 “Conoscenza delle parti sommerse dei vulcani italiani e valutazione del potenziale rischio vulcanico”, the study of submarine mass-movement has been underestimated until the occurrence of the landslide-tsunami events that affected Stromboli on December 30, 2002. This event made the Italian Institutions and the scientific community more aware of the hazard related to submarine landslides, mainly in light of the growing anthropization of coastal sectors, that increases the vulnerability of these areas to the consequences of such processes. In this regard, two important national projects have been recently funded in order to study coastal instabilities (PRIN 24, 06-08) and to map the main submarine hazard features on continental shelves and upper slopes around the most part of Italian coast (MaGIC Project). The study realized in this Thesis is addressed to the understanding of these processes, with particular reference to Stromboli submerged flanks. These latter represent a natural laboratory in this regard, as several kind of instability phenomena are present on the submerged flanks, affecting about 90% of the entire submerged areal and often (strongly) influencing the morphological evolution of subaerial slopes, as witnessed by the event occurred on 30 December 2002. Furthermore, each phenomenon is characterized by different pre-failure, failure and post-failure mechanisms, ranging from rock-falls, to turbidity currents up to catastrophic sector collapses. The Thesis is divided into three introductive chapters, regarding a brief review of submarine instability phenomena and related hazard (cap. 1), a “bird’s-eye” view on methodologies and available dataset (cap. 2) and a short introduction on the evolution and the morpho-structural setting of the Stromboli edifice (cap. 3). This latter seems to play a major role in the development of largescale sector collapses at Stromboli, as they occurred perpendicular to the orientation of the main volcanic rift axis (oriented in NE-SW direction). The characterization of these events and their relationships with successive erosive-depositional processes represents the main focus of cap.4 (Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability) and cap. 5 (Lateral collapses and active sedimentary processes on the North-western flank of Stromboli Volcano), represented by articles accepted for publication on international papers (Marine Geology). Moreover, these studies highlight the hazard related to these catastrophic events; several calamities (with more than 40000 casualties only in the last two century) have been, in fact, the direct or indirect result of landslides affecting volcanic flanks, as observed at Oshima-Oshima (1741) and Unzen Volcano (1792) in Japan (Satake&Kato, 2001; Brantley&Scott, 1993), Krakatau (1883) in Indonesia (Self&Rampino, 1981), Ritter Island (1888), Sissano in Papua New Guinea (Ward& Day, 2003; Johnson, 1987; Tappin et al., 2001) and Mt St. Augustine (1883) in Alaska (Beget& Kienle, 1992). Flank landslide are also recognized as the most important and efficient mass-wasting process on volcanoes, contributing to the development of the edifices by widening their base and to the growth of a volcaniclastic apron at the foot of a volcano; a number of small and medium-scale erosive processes are also responsible for the carving of Stromboli submarine flanks and the transport of debris towards the deeper areas. The characterization of features associated to these processes is the main focus of cap. 6; it is also important to highlight that some small-scale events are able to create damage to coastal areas, as also witnessed by recent events of Gioia Tauro 1978, Nizza, 1979 and Stromboli 2002. The hazard potential related to these phenomena is, in fact, very high, as they commonly occur at higher frequency with respect to large-scale collapses, therefore being more significant in terms of human timescales. In the last chapter (cap. 7), a brief review and discussion of instability processes identified on Stromboli submerged flanks is presented; they are also compared with respect to analogous processes recognized in other submerged areas in order to shed lights on the main factors involved in their development. Finally, some applications of multibeam data to assess the hazard related to these phenomena are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural hazard related to the volcanic activity represents a potential risk factor, particularly in the vicinity of human settlements. Besides to the risk related to the explosive and effusive activity, the instability of volcanic edifices may develop into large landslides often catastrophically destructive, as shown by the collapse of the northern flank of Mount St. Helens in 1980. A combined approach was applied to analyse slope failures that occurred at Stromboli volcano. SdF slope stability was evaluated by using high-resolution multi-temporal DTMMs and performing limit equilibrium stability analyses. High-resolution topographical data collected with remote sensing techniques and three-dimensional slope stability analysis play a key role in understanding instability mechanism and the related risks. Analyses carried out on the 2002–2003 and 2007 Stromboli eruptions, starting from high-resolution data acquired through airborne remote sensing surveys, permitted the estimation of the lava volumes emplaced on the SdF slope and contributed to the investigation of the link between magma emission and slope instabilities. Limit Equilibrium analyses were performed on the 2001 and 2007 3D models, in order to simulate the slope behavior before 2002-2003 landslide event and after the 2007 eruption. Stability analyses were conducted to understand the mechanisms that controlled the slope deformations which occurred shortly after the 2007 eruption onset, involving the upper part of slope. Limit equilibrium analyses applied to both cases yielded results which are congruent with observations and monitoring data. The results presented in this work undoubtedly indicate that hazard assessment for the island of Stromboli should take into account the fact that a new magma intrusion could lead to further destabilisation of the slope, which may be more significant than the one recently observed because it will affect an already disarranged deposit and fractured and loosened crater area. The two-pronged approach based on the analysis of 3D multi-temporal mapping datasets and on the application of LE methods contributed to better understanding volcano flank behaviour and to be prepared to undertake actions aimed at risk mitigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the statics and dynamics of a glassy,non-entangled, short bead-spring polymer melt with moleculardynamics simulations. Temperature ranges from slightlyabove the mode-coupling critical temperature to the liquidregime where features of a glassy liquid are absent. Ouraim is to work out the polymer specific effects on therelaxation and particle correlation. We find the intra-chain static structure unaffected bytemperature, it depends only on the distance of monomersalong the backbone. In contrast, the distinct inter-chainstructure shows pronounced site-dependence effects at thelength-scales of the chain and the nearest neighbordistance. There, we also find the strongest temperaturedependence which drives the glass transition. Both the siteaveraged coupling of the monomer and center of mass (CM) andthe CM-CM coupling are weak and presumably not responsiblefor a peak in the coherent relaxation time at the chain'slength scale. Chains rather emerge as soft, easilyinterpenetrating objects. Three particle correlations arewell reproduced by the convolution approximation with theexception of model dependent deviations. In the spatially heterogeneous dynamics of our system weidentify highly mobile monomers which tend to follow eachother in one-dimensional paths forming ``strings''. Thesestrings have an exponential length distribution and aregenerally short compared to the chain length. Thus, arelaxation mechanism in which neighboring mobile monomersmove along the backbone of the chain seems unlikely.However, the correlation of bonded neighbors is enhanced. When liquids are confined between two surfaces in relativesliding motion kinetic friction is observed. We study ageneric model setup by molecular dynamics simulations for awide range of sliding speeds, temperatures, loads, andlubricant coverings for simple and molecular fluids. Instabilities in the particle trajectories are identified asthe origin of kinetic friction. They lead to high particlevelocities of fluid atoms which are gradually dissipatedresulting in a friction force. In commensurate systemsfluid atoms follow continuous trajectories for sub-monolayercoverings and consequently, friction vanishes at low slidingspeeds. For incommensurate systems the velocity probabilitydistribution exhibits approximately exponential tails. Weconnect this velocity distribution to the kinetic frictionforce which reaches a constant value at low sliding speeds. This approach agrees well with the friction obtaineddirectly from simulations and explains Amontons' law on themicroscopic level. Molecular bonds in commensurate systemslead to incommensurate behavior, but do not change thequalitative behavior of incommensurate systems. However,crossed chains form stable load bearing asperities whichstrongly increase friction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upgrade of the CERN accelerator complex has been planned in order to further increase the LHC performances in exploring new physics frontiers. One of the main limitations to the upgrade is represented by the collective instabilities. These are intensity dependent phenomena triggered by electromagnetic fields excited by the interaction of the beam with its surrounding. These fields are represented via wake fields in time domain or impedances in frequency domain. Impedances are usually studied assuming ultrarelativistic bunches while we mainly explored low and medium energy regimes in the LHC injector chain. In a non-ultrarelativistic framework we carried out a complete study of the impedance structure of the PSB which accelerates proton bunches up to 1.4 GeV. We measured the imaginary part of the impedance which creates betatron tune shift. We introduced a parabolic bunch model which together with dedicated measurements allowed us to point to the resistive wall impedance as the source of one of the main PSB instability. These results are particularly useful for the design of efficient transverse instability dampers. We developed a macroparticle code to study the effect of the space charge on intensity dependent instabilities. Carrying out the analysis of the bunch modes we proved that the damping effects caused by the space charge, which has been modelled with semi-analytical method and using symplectic high order schemes, can increase the bunch intensity threshold. Numerical libraries have been also developed in order to study, via numerical simulations of the bunches, the impedance of the whole CERN accelerator complex. On a different note, the experiment CNGS at CERN, requires high-intensity beams. We calculated the interpolating Hamiltonian of the beam for highly non-linear lattices. These calculations provide the ground for theoretical and numerical studies aiming to improve the CNGS beam extraction from the PS to the SPS.