996 resultados para HUMAN PHARMACOLOGY
Resumo:
The purpose of this study was to evaluate bioequivalence of two commercial 8 mg tablet formulations of ondansetrona available ill the Brazilian market. In this study, a simple, rapid, sensitive and selective liquid chromarography-tandem mass spectrometry method is described for the determination of ondansetron in human plasma samples. The method was validated over a concentration range of 2.5-60 ng/ml and used in a bioequivalence trial between orally disintegrating and conventional tablet ondansetron formulations, to assess its usefulness in this kind of Study. Vonau flash (R) (Biolab Sanus Farmaceutica, Brazil, as test formulations) and Zofran (R) (GlaxoSmithKline, Brazil, as reference formulation) were evaluated following a single 8 mg close to 23 healthy volunteers of both genders. The dose was administered after an overnight fast according to a two-way crossover design. Bioequivalence between the products was determinated by Calculating 90% confidence interval (90% CI) for the ratio of C(max), AUC(0-t) and AUC(0-(sic)) values for the test and reference products, using logarithmically transformed data. The 90% confidence interval for the ratio of C(max) (87.5-103.8%), AUC(0-t) (89.3-107.2%) and AUC(0--(sic)) (89.7-106.0%) values for the test and reference products is Within the 80-125% interval, proposed by FDA, EMEA and ANVISA. It was concluded that two ondansetron formulations are bioequivalent ill their rate and extent of absorption. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A simple spectrophotometric method has been developed,for the determination of fenoterol hydrobromide (FH) in tablets, drops and syrup, as the only active principle and associated with ibuprofen. The method is based on the oxidative coupling reaction of the FH with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ceric sulphate as oxidant reagent. The mixture of the drug, MBTH and ceric sulfate, in acid medium, produces a red brown color compound, with absorption maximum at 475 nm. The calibration curve was linear over a concentration range from 3.0 to 12.0 mu g/mL, with correlation coefficient of 0.9998. The different experimental parameters affecting the development and stability of the color compound were carefully studied and optimized. The method was applied successfully to assay FH in dosage forms and simulated samples. The coefficient of variation was from 0.25 % to 0.82 % and average recoveries of the standard from 98 % to 102 %. The excipients (tablets and drops) did not interfere in the analysis and the results showed that method can be used for determination of the FH isolated or associated with ibuprofen with precision, accuracy and specificity. In case of syrup, the interference in the analysis suggests a possible reaction between vehicle components with MBTH.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
Background: Zidovudine is a thymidine nucleoside reverse transcriptase inhibitor with activity against HIV type 1. Some (similar to 8) generic formulations of zidovudine are available in Brazil; however, based on a literature search, information concerning their bioavailability and pharmacokinetic properties in the Brazilian population has not been reported. Objective: The aim of this study was to compare the bioavailability and pharmacokinetic properties of 2 capsule formulations of zidovudine 100 mg in healthy Brazilian volunteers. Methods: This open-label, randomized, 2-way crossover study utilized a 1-week washout period between doses. Blood samples were collected for 8 hours after a single dose of zidovudine 100-mg test (Zidovudina, Fundaqdo para o Remedio Popular, Sao Paulo, Brazil) or reference formulation (Retrovir (R), GlaxoSmithKline, Philadelphia, Pennsylvania). Plasma zidovudine concentrations were determined using a validated high-performance liquid chromatography method with ultraviolet detection at 265 nm. C-max, T-max, AUC(0-t), AUC(0-infinity), t(1/2), and the elimination constant (k(e)) were determined using noncompartmental analysis. The formulations were considered bioequivalent if the 90% CIS for C-max, AUC(0-t), and AUC(0-infinity) fell within the interval of 80 % to 125 %, the regulatory definition set by the US Food and Drug Administration (FDA). Results: Twenty-four healthy volunteers (12 males, 12 females; mean age, 27 years; weight, 60 kg; height, 167 cm) were enrolled and completed the study. The 90% CIs of the treatment ratios for the logarithmic-transformed values of C-max, AUC(0-t), and AUC(0-infinity) were 80.0% to 113.6%, 93.9% to 109.7%, and 93.6% to 110.1 %, respectively. The values for the test and reference formulations were within the FDA bioequivalence definition intervals of 80% to 125%. Conclusions: In this small study in healthy subjects, no statistically significant differences in C-max, AUC(0-t), and AUC(0-)infinity were found between the test and reference formulations of zidovudine 100-mg capsules. The 90% CIs for the mean ratio values for the test and reference formulations of AUC(0-t), AUC(0-infinity), and C-max indicated that the reported data were entirely within the bioequivalence acceptance range proposed by the FDA of 80% to 125% (using log-transformed data).
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin`s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.
Resumo:
The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of ten natural polyphenolic compounds (chlorogenic acid, apigenin, catechin, epicatechin, flavanone, flavone, quercetin, rutin, vicenin-2 and vitexin) with human serum albumin and mixtures of human serum albumin and alpha(1)-acid glycoprotein under near physiological conditions is studied by capillary electrophoresis-frontal analysis. Furthermore, the binding of these polyphenolic compounds to total plasmatic proteins is evaluated using ultrafiltration and capillary electrophoresis. In spite of the relatively small differences in the chemical structures of the compounds studied, large differences were observed in their binding behaviours to plasmatic proteins. The hydrophobicity, the presence/absence of some functional groups, steric hindrance and spatial arrangement seem to be key factors in the affinity of natural polyphenols towards plasmatic proteins.