946 resultados para GREENHOUSE
Resumo:
The relationship between corporate and sustainability performance continues to be controversial and unclear, not withstanding numerous theoretical and empirical studies. Despite this, views on corporate responsibilities “meet where management can show how voluntary social and environmental management contributes to the competitiveness and economic success of the company.” This approach is fundamental to the business case for infrastructure sustainability. It suggests that beyond-compliance activities undertaken by companies are commercially justified if they can be shown to contribute to profitability and shareholder value. Potential public good benefits range across a wide spectrum of economic (for example employment, local purchasing, reduced demand for electricity generation), social (indigenous employment and development, equity of access), and environmental (lower greenhouse gas emission, reduced use of non-renewable resources and potable water, less waste, enhanced biodiversity). Some of these benefits have impacts that lie in more than one of the economic, social, and environmental areas of public goods. Using a sustainability rating schemes and potential business benefits from sustainability initiatives, this paper presents a brief summary of an online survey of industry that identifies how rating scheme themes and business benefits relate. This allows for a case to be built demonstrating which sustainability themes offer particular business benefits.
Resumo:
Emissions trading schemes have been introduced throughout the world in order to achieve an environmental end. In the pursuit of reducing greenhouse gas emissions, these schemes will have a direct impact on the global economy. This book examines the details of emissions trading schemes through the lens of the World Trade Organization (WTO) law. Emissions trading schemes both implemented and proposed will be deconstructed to understand whether they will have a single uniform legal status within the WTO law, or indeed whether the legal status of the units of trade will differ on a case-by-case basis. This book examines non-discrimination provisions and exceptions within four significant WTO ‘covered agreements’. This analysis will be undertaken with a goal to understand how emissions trading scheme measures may be labelled and treated by WTO dispute settlement bodies. Moreover, the narrative of this publication demonstrates where decisions must be made by WTO Members in relation to the legal treatment of emissions trading units and liabilities. The aim of the book is to consider the issues associated with emissions trading that arise within the existing WTO law. This monograph will consider emissions trading schemes through the lens of WTO law to establish how these schemes will be defined, where they may potentially breach the non-discrimination provisions of the law and, whether the WTO law should be amended through Member agreement in order to accommodate these schemes. The book is an adaptation of a PhD thesis, which is an analysis of one emissions trading framework – the Australian Clean Energy Package – using WTO law as the theoretical framework. The aim of the proposed monograph is to increase the scope of analysis from the Clean Energy Package to emissions trading schemes more generally. It is envisaged that to do this effectively, examples of frameworks that have been proposed and implemented by various WTO members must be used as case studies for both WTO compliance and non-compliance.
Resumo:
There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
Biomass is an important energy resource for producing bioenergy and growing the global economy whilst minimising greenhouse gas emissions. Many countries, like Australia have a huge amount of biomass with the potential for bioenergy, but non-edible feedstock resources are significantly under-exploited. Hence it is essential to map the availability of these feedstocks to identify the most appropriate bioenergy solution for each region and develop supply chains for biorefineries. Using Australia as a case study,we present the spatial availability and opportunities for second and third generation feedstocks. Considerations included current land use, the presence of existing biomass industries and climatic conditions. Detailed information on the regional availability of biomass was collected from government statistics, technical reports and energy assessments as well as from academic literature. Second generation biofuels have the largest opportunity in New South Wales, Queensland and Victoria (NSW, QLD and VIC) and the regions with the highest potential for microalgae are Western Australia and Northern Territory (WA, NT), based on land use opportunity cost and climate. The approach can be used in other countries with a similar climate. More research is needed to overcome key technical and economic hurdles.
Resumo:
The Australian food system significantly contributes to a range of key environmental issues including harmful greenhouse gas emissions, air pollution, soil desertification, biodiversity loss and water scarcity. At the same time, the Australian s food system is a key cause of public health nutrition issues that stem from the co-existence of over- and under-consumption of dietary energy and nutrients. Within these challenges lie synergies and opportunities because a diet that has a lower environmental impact generally aligns with good nutrition. Australian State and Federal initiatives to influence food consumption patterns focus on individual body weight and ‘soft law’ interventions. These regulatory approaches, by focusing on select symptoms of food system failures, are fragmented, reductionist and inefficient. In order to illustrate this point, this paper will explore Australian regulatory responses to diet-related illnesses. The analysis will support the argument that only when regulatory responses to diets become embedded within reform of the current food system will substantial improvements to human and planetary health be achieved.
Resumo:
Although road construction and use provides significant economic and social benefits its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors both directly through fossil energy consumed in mining, transporting, earthworks, and paving work, along with in-direct emissions from road use by vehicles. This discussion paper will outline opportunities within the Australian context for reducing environmental pressure in road building and consider the future environmental impacts of road projects.
Resumo:
This 600+ page online education program provides free access to a comprehensive education and training package that brings together the knowledge of how countries, specifically Australia, can achieve at least 60 percent cuts to greenhouse gas emissions by 2050. This resource has been developed in line with the activities of the CSIRO Energy Transformed Flagship research program which is focused on research that will assist Australia to achieve this target. This training package provides industry, governments, business and households with the knowledge they need to realise at least 30 percent energy efficiency savings in the short term while providing a strong basis for further improvement. It also provides an updated overview of advances in low carbon technologies, renewable energy and sustainable transport to help achieve a sustainable energy future. Whist this education and training package has an Australian focus, it outlines sustainable energy strategies and provide links to numerous online reports which will assist climate change mitigation efforts globally. This training program seeks to compliment other initiatives seeking to encourage the reduction of greenhouse gas emissions through behaviour change, sustainable consumption, and constructive changes in economic incentives and policy.
Resumo:
Stepping out on the streets of Townsville, where the sun shines for 300 days a year, you can feel a buzz in the air. But it’s not just the sunshine, booming development or new esplanade that has this North Queensland city excited. There’s a groundswell of green activity as residents embrace ‘Townsville Solar City’ – the only Queensland city participating in the Federal Government’s Solar Cities program. Keen to create a more sustainable future, this community is participating in a range of initiatives led by Ergon Energy and Townsville City Council. These activities aim to reduce energy use, increase solar energy capacity and cut annual greenhouse gas emissions by more than 50 000 tonnes.
Resumo:
Government efforts to help our economy through the global financial crisis could be eroded by the future economic impacts of global warming. The good news is that a ‘factor five’ approach to productivity – delivering five times more value with the same input, or using one-fifth the resources to deliver the same value – will not only help cut greenhouse gas emissions but, done effectively, bring economic benefits.
Resumo:
Cement production is estimated to be responsible for approximately 6 per cent of total global greenhouse gas emissions. One of the most promising alternatives to common Portland cement is geopolymer cement, and Australian company Zeobond is a bone fide leader in its manufacture.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, and through the emissions from road use by vehicles. Further,according to the Australian Government, when combined with expected population growth and internal migration,expected changes in temperature and rainfall are expected to increase road maintenance costs. This discussion paper will outline opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provide a framework for considering the potential pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, plus the emissions from road use by vehicles. Further, according to the Australian Government, when combined with forecast population growth, internal migration and changes in temperature and rainfall, these are expected to increase road maintenance costs. This discussion paper outlines opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provides a framework for considering the potential future pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability. Seven strategic areas are outlined for further investigation, including a guide to carbon management for road agencies covering planning, funding, procurement, delivery and maintenance of roads.
Resumo:
In the 21st Century much of the world will experience untold wealth and prosperity that could not even be conceived only some three centuries before. However as with most, if not all, of the human civilisations, increases in prosperity have accumulated significant environmental impacts that threaten to result in environmentally induced economic decline. A key part of the world’s response to this challenge is to rapidly decarbonise economies around the world, with options to achieve 60-80 per cent improvements (i.e. in the order of Factor 5) in energy and water productivity now available and proven in every sector. Drawing upon the 2009 publication “Factor 5”, in this paper we discuss how to realise such large-scale improvements, involving complexity beyond technical and process innovation. We begin by considering the concept of greenhouse gas stabilisation trajectories that include reducing current greenhouse gas emissions to achieve a ‘peaking’ of global emissions, and subsequent ‘tailing’ of emissions to the desired endpoint in ‘decarbonising’ the economy. Temporal priorities given to peaking and tailing have significant implications for the mix of decarbonising solutions and the need for government and market assistance in causing them to be implemented, requiring careful consideration upfront. Within this context we refer to a number of examples of Factor 5 style opportunities for energy productivity and decarbonisation, and then discuss the need for critical economic contributions to take such success from examples to central mechanisms in decarbonizing the global economy.
Resumo:
The Australian housing sector contributes about a fifth of national greenhouse gas (GHG) emissions. GHG emissions contribute to climate change which leads to an increase in the occurrence or intensity of natural disasters and damage of houses. To ensure housing performance in the face of climate change, various rating tools for residential property have been introduced in different countries. The aim of this paper is to present a preliminary comparison between international and Australian rating tools in terms of purpose, use and sustainability elements for residential property. The methodologies used are to review, classify, compare and identify similarities and differences between rating tools. Two international tools, Building Research Establishment Environmental Assessment Methodology (BREEAM) (UK) and Leadership in Energy and Environmental Design for Homes (LEED-Homes) (USA), will be compared to two Australian tools, Green Star – Multi Unit Residential v1 and EnviroDevelopment. All four rating tools include management, energy, water and material aspects. The findings reveal thirteen elements that fall under three categories: spatial planning, occupants’ health and comfort, and environmental conditions. The variations in different tools may result from differences in local prevailing climate. Not all sustainability elements covered by international rating tools are included in the Australian rating tools. The voluntary nature of the tools implies they are not broadly applied in their respective market and that there is a policy implementation gap. A comprehensive rating tool could be developed in Australia to promote and lessen the confusion about sustainable housing, which in turn assist in improving the supply and demand of sustainable housing.