955 resultados para Flow rate variation coefficient
Resumo:
Studies regarding the field of this work aim to substitute industrial mechanical conveyors with pneumatic conveyors to overcome the disadvantages in solids flow regulation and risks posed to production and health. The experimental part of this work examines how the granular material properties, fluidizing airflow rate, equipment geometry, and pressures along the pipes affect the mass flow rate through the system. The results are compared with those obtained from previous experiments conducted with alumina. Experiments were carried out with a pilot scale downer-riser system at Outotec Research Center Frankfurt. Granular materi-als used in this work are named as sand, ilmenite, iron ore 1 and iron ore 2.
Resumo:
In the present paper, we report on the analytical use of a dynamic droplet based gas collection and an analysis system. A droplet formed at the tip of a tube represents a sampling approach that provides an indefinitely renewable surface and uses very little reagent. Sample gas flows past the droplet at a low flow rate. After the gas was sampled , the analysis can be carried out by different methodologies. The feasibility of the sensor is demonstrated by continuos determination of gaseous as: NO2, Cl2 and SO2.
Resumo:
The literature part of the work reviews overall Fischer-Tropsch process, Fischer-Tropsch reactors and catalysts. Fundamentals of Fischer-Tropsch modeling are also presented. The emphasis is on the reactor unit. Comparison of the reactors and the catalysts is carried out to choose the suitable reactor setup for the modeling work. The effects of the operation conditions are also investigated. Slurry bubble column reactor model operating with cobalt catalyst is developed by taking into account the mass transfer of the reacting components (CO and H2) and the consumption of the reactants in the liquid phase. The effect of hydrostatic pressure and the change in total mole flow rate in gas phase are taken into account in calculation of the solubilities. The hydrodynamics, reaction kinetics and product composition are determined according to literature. The cooling system and furthermore the required heat transfer area and number of cooling tubes are also determined. The model is implemented in Matlab software. Commercial scale reactor setup is modeled and the behavior of the model is investigated. The possible inaccuraries are evaluated and the suggestions for the future work are presented. The model is also integrated to Aspen Plus process simulation software, which enables the usage of the model in more extensive Fischer-Tropsch process simulations. Commercial scale reactor of diameter of 7 m and height of 30 m was modeled. The capacity of the reactor was calculated to be about 9 800 barrels/day with CO conversion of 75 %. The behavior of the model was realistic and results were in the right range. The highest uncertainty to model was estimated to be caused by the determination of the kinetic rate.
Resumo:
Results on the optimization of analytical methods for the determination of phosphorus in phosphino-polycarboxylate (PPCA), used frequently as scale inhibitor during oil production, by ICP-AES and ICP-MS are presented. Due to the complex matrix of production waters (brines) and their high concentration in inorganic phosphorus, the separation of organic phosphorus prior to its determination is necessary. In this work, minicolumns of silica immobilized C18 were used. Optimization of the separation step resulted in the following working conditions: (1) prewashing of the column with methanol (80% v/v); (2) use of a flow rate of 5 mL/min and 10 mL/min, respectively, for the preconditioning step and for percolation of the water sample; (3) final elution of organic phosphorus with 7 mL of buffer of H3BO3/NaOH (0.05 M, pH 9) with a flow rate of 1 mL/min. Sample detection limits (3s) for different combinations of nebulizers and spectrometric methods, based on 10 mL water aliquots, are: ICP-AES -Cross flow (47 mg/L) and Ultrasonic (18 mug/L); ICP-MS -Cross flow (1.2 mug/L), Cyclonic (0.7 mug/L) and Ultrasonic (0.5 mug/L). Typical recoveries of organic phosphorus are between 90 and 95% and the repeatability of the whole procedure is better than 10%. The developed methodology was applied successfully to samples from the oil-well NA 46, platform PNA 2, Campos basin, Brazil. Assessment of the PPCA inhibitor was possible at lower concentrations than achieved by current analytical methods, resulting in benefits such as reduced cost of chemicals, postponed oil production and lower environmental impacts.
Resumo:
Turun seudulla kuuden kunnan jätevesien käsittely keskitetään Kakolanmäen kallion sisälle rakennettuun jätevedenpuhdistamoon, joka otetaan käyttöön vuoden 2008 lopulla. Kakolanmäen jätevedenpuhdistamolla on varauduttu tulevaisuudessa kiristyviin lupaehtoihin sekä mahdollisiin puhdistetun jäteveden hygieenistä laatua koskeviin lisämääräyksiin jättämällä tilavaraus puhdistetun jäteveden desinfioimiselle ultraviolettivalolla. Diplomityössä on selvitetty vuoden kestäneessä tutkimusjaksossa 1.9.2006- 31.8.2007 Turun kaupungin keskuspuhdistamolta mereen johdetun puhdistetun jäteveden ja esiselkeytetyn ohitusveden hygieenisen laadun vaihtelua. Jäteveden desinfiointitarvetta on arvioitu tarkastelemalla jätevedenpuhdistamon hygieenistä puhdistustulosta ja jätevesien vaikutusta purkuvesistön hygieeniseen tilaan. Tutkimuksen perusteella virtaama ei vaikuttanut merkittävästi jäteveden ulosteperäisten bakteerien määriin. Sen sijaan jäteveden bakteeripitoisuudet laskivat alhaisissa lämpötiloissa. Lämpötilan vaikutus näkyi selkeämmin esiselkeytetyssä kuin puhdistetussa jätevedessä eli bakteerien poistumiseen aktiivilietevaiheen aikana vaikuttavat muut tekijät. Mitä tehokkaammin aktiivilietevaihe toimi, sitä tehokkaammin myös bakteereja poistui. Taudinaiheuttajabakteerit selvisivät puhdistusprosessista paremmin viileän kauden aikana. Puhdistetun jäteveden hygieeninen laatu ei täyttänyt uimaveden tai kasteluveden laatuvaatimuksia, joten desinfiointitarve olisi perustelua. Jätevesien vaikutus Turun edustan merialueen hygieeniseen tilaan näkyi ajoittain korkeina bakteeripitoisuuksina purkupaikan lähistöllä. Vielä ei ole suoraa näyttöä siitä aiheuttavatko jätevedet purkupaikan lähistön uimarannoilla terveydellisiä riskejä. Jäteveden UV-desinfiointi kannattava toteuttaa vain jos hygieeninen puhdistusvelvoite määrätään. UV-desinfioinnin mitoituksessa Kakolanmäen jätevedenpuhdistamolla tulee ottaa huomioon suurin sallittu hydraulinen painehäviö. Mitoitus voidaan tehdä puhdistamon käyttöönoton jälkeen kun tarvitut prosessimittaustiedot ovat saatavilla.
Resumo:
This paper presents a system for electrochemical hydride generation using flow-injection and atomic absorption spectrometry to determine selenium in biological materials. The electrolytic cell was constructed by assembling two reservoirs, one for the sample and the other for the electrolytic solution separated by a Nafion membrane. Each compartment had a Pt electrode. The sample and electrolyte flow-rates, acidic media, and applied current were adjusted to attain the best analytical performance and ensure the membrane lifetime. The atomisation system used a T quartz tube in an air-LPG flame. The composition of the flame, the observation height, and the argon flow rate used to carry the hydrides were critically investigated. The system allowed to perform thirty determinations per hour with a detection limit of 10 mug L-1 of Se. Relative standard deviations were in general lower than 1.5% for a solution containing 20.0 and 34.0 mug L-1 of Se in a typical sample digest. Accuracy was assessed analysing the certified materials: rice flour (NIST-1568) from National Institute of Standard and Technology and dried fish (MA-A-2), whole animal blood (A-2/1974) from the International Atomic Energy Agency.
Resumo:
Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA) systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar) indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.
Resumo:
An alternative analytical method for nitrogen dioxide (NO2) in atmosphere was developed. The collection of NO2 is performed by a Sep-Pack C-18 cartridge impregnated with 11% (v/v) of triethanolamine plus 3,6 % (v/v) of ethylene glycol plus 25 % (v/v) of acetone combined solution. When the impregnating is used, NO2 is collected with good repeatibility (CV = 3,3 %). The NO2 absorbed in the sampler was stripped from the sorbent with a methanol 5% (v/v) aqueous solution and was determined by colorimetry as nitrite by using the Griess-Saltzman reagent. The detection limit of 1,4 ppb for 60 min sampling at 0,5 L min-1 flow rate was obtained. Preparation and conditioning procedures for TEA-C-18 cartridge, sampling flow rate, absorption capacity and interference of other species are discussed.
Resumo:
The effects of 60Co ionizing radiations in doses of 0, 75, 100, 150, 200 and 250Gy on garlic, upon the alpha-tocopherol concentration were studied. The alpha-tocopherol contents were established by high performance liquid chromatography (HPLC), after direct hexane extraction from the garlic samples. The alpha-tocopherol was determined through normal-phase column, and mobile phase was composed by hexane: iso-propyl alcohol (99:01 v/v), with 2mL/min flow rate and fluorescence detector. It is statistically shown that an irradiation dose of up to 150 Gy does not affect the garlic alpha-tocopherol content.
Resumo:
In this work, a spectrophotometric flow injection analysis system using a crude extract of avocado (Persea americana) as a source of polyphenol oxidase to dopamine determination was developed. The substrates and enzyme concentrations from 2.4x10-7 to 5.3x10-4 mol L-1 and 28 to 332 units mL-1 were evaluated, respectively. In addition, the FIA parameters such as sample loop (50 to 500 µL), flow rate (1.4 to 4.3 mL min-1) and reactor length (100 to 500 cm) were also evaluated in a 0.1 mol L-1 phosphate buffer solution (pH 7.0). Dopamine solution concentrations were determined using 277 units mL-1 enzyme solution, 400 mL enzyme loop, 375 µL sample loop, 2.2 mL min-1 flow rate and a reactor of 350 cm. The analytical curve showed a linearity from 5.3x10-5 to 5.3x10-4 mol L-1 dopamine with a detection limit of 1.3x10-5 mol L-1. The analytical frequency was 46 h-1 and the RSD lower than 0.5% for 5.3x10-4 mol L-1 dopamine solution (n=10). A paired t-test showed that all results obtained for dopamine in commercial formulations using the proposed flow injection procedure and a spectrophotometric procedure agree at the 95% confidence level.
Resumo:
The work describes a new procedure for cetylpyridinium chloride determination in oral disinfectants, based on a flow-injection system with potentiometric detection. The determination was based on the measurement of picrate concentration decrease as result of ion-pair reaction with the analyte present in the injected sample. In the optimised set-up the sample injection volume was kept at 400 µL and merged downstream with the reagent solution containing 1,0 x10-5 mol/L of picrate adjusted to pH 5.0 with citrate/citric acid buffer. The flow rate was fixed at 8 mL/min and the reactor length at 40 cm. The proposed procedure enables the determination of cetylpyridinium in the analytical range of 5,0x10-6 - 7,5x10-5 mol/L at a sampling rate of 60/h. The results for real samples had a precision better than 3% and were comparable to the labelled values.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
The aim of the present work was to test the combination of non-esterified fatty acid (NEFA) isolation using fumed silicon dioxide with capillary gas-chromatography (C-GC) with splitless injection for the analysis of NEFAs in human plasma. Injection volume, solvent re-condensation and split purge flow-rate were the parameters evaluated for the analysis of fatty acid methyl esters by C-GC. The use of a solvent re-condensation technique, associated with 1.0 µL injection and a split purge flow rate of 80 mL/min resulted in satisfactory analysis of NEFAs. Fourteen fatty acids were identified in plasma samples, ranging from 2.03 to 184.0 µmol/L. The combination of both techniques proved useful for routine analyses of plasma NEFAs.
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).