948 resultados para Fabricação de semicondutores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of the red pottery brick, made traditionally with clay, is a technique that is already stabled. However, in spite of the little complexity that involves the conventional process of these bricks production, it are exposed to many problems that begin in the fase of exploration of the mines, the problems get worse because of the lack of the clay's characterization, and they continue through the steps of the dough preparation, conformation of the products, the drying and the burning process. The wastefulness is shown and so is the low quality of the material produced. Among other factors, the high use of energy in the burning makes the cost of this material inaccessible to the low income consumer. Besides this, the destruction of the environment around the mines and the use of native vegetation to produce wood - the most used fuel in the pottery industry - make serious environmental damage. The production technique of a new type of simple brick (adobe), that has low cost and no environmental damage, can be the viable altemative to lower the cost of this part of the civil construction, and, consequently, in the building of cheaper houses. In this paper, the results of the mechanical resistance of the adobe brick are shown, using in its composition, clay, natural vegetable fibers, cement and plaster in a process that is completely handcrafted and manual. It is intented to make clear that are possible alternatives to be put in practice, with the simple process, using "raw earth" that has been used in the construction of houses in thousands of years, trying to solve these severe problems. Analysis and tests were performed to find results that could prove the possibility of the utilization of this kind of material. Other studies are in progress, and the new researches are necessary to enrich this work, but it stays the certainty that there is potential to produce bricks from adobe, as an alternative that has low cost to civil construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industries of structural ceramics are among the most important production chains in the state of Rio Grande do Norte. The industry and other interest groups to target the replacement of firewood by natural gas. Studies accordingly concluded that simple change does not guarantee products of superior quality, and that the increase in spending on fuel can economically cripple the use of gas for burning the majority of products manufactured by that action. However some proposals of innovations in terms of process and product are being studied in an attempt to justify the use of natural gas in industry, structural ceramics. One of the aspects investigated is the development of ceramic products differentiated, with new designs and greater value added. Inserted in that context, this paper aims to investigate the potential use of clay-firing clear fabrication of the "bricks of apparent joins drought", a new ceramic product with an innovative way. The development of the work was done in three stages. In the initial stage was held the characterization of raw materials, sought information on physical, chemical, mineralogical and mechanical samples. In the second stage five bodies were made using two of the nine ceramic clay characterized the first step. The masses were analyzed and compared with respect to the size distribution, plasticity and technological properties. In the last part of this work was carried out tests on massive bricks manufactured on an industrial scale. The results show that the nine clays can be used in the manufacture of new ceramic products, is the only constituent of mass ceramic or by mixing with other(s) clay(s

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electric can be converted into thermal, luminous, electromagnetic, and also in mechanical energy. In this context the electric engines plays a fundamental role, specially that they work very below of its nominal capacity, with consequent decrease load density. In industrial environment, these characteristics of work of DC engines had also generated an extreme consumption of coal brushs and attack in the commutator reducing the useful life of the engine and increasing maintenance demand and cost. The general objective of the present work is to study the influence of the granulometry of the coal brush used in DC engines with the resistance to the consumption of the same ones, as well as in the performance presented by the commutator of the engine. Additionally, determining the measurable and not measurable profits when the brush used is adjusted to the application. The brushes had been produced by an industry of the sector and tested in industrial environment to evaluate their performance and consumption. Preliminary results evidence a substantial improvement in the performance of these brushes in function of its microstructure and the application in which it is used

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A housing unit was built to study the thermal performance, and of material using a composite made of gypsum and EPS ground. We used two techniques of construction, using blocks, and filling on the spot. Two compositions of the composite were studied. The blocks were fixed using conventional mortar. In the technical of filling on the spot were used PET bottles up inside the walls to provide mechanical and thermal resistance. Compression tests were realized according to the ABNT standard of sealing bricks. It is going to be shown an analysis of the thermal comfort through the use of thermocouples placed on the walls of the building, internally and externally. The manufacturing viability of houses, using recyclable materials, through the use of composite materials proposed will be demonstrated. The constructive aspects showing the advantages and disadvantages of the technique used also will be broached. The block used presents structural functions and thermal insulating, is low cost and represents an alternative to the use of EPS and PET bottles which are materials that end up occupying much space in the landfills, giving than an ecologically correct use. The results of thermal analysis shows the thermal comfort provided by the composite by the obtainment of a difference between the internal and external surfaces of the walls more exposed to the sun around 7º C. The average temperature of the air inside the building, around 28.0 º C was below the zone of thermal comfort recommended for countries with hot weather

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initially concentrated in some poles at the South and Southeast regions of Brazil, the ceramic tiles industry became wide during the 80 s decade, with a disconcentration industrial and regional pulverization. The competitiveness in the ceramic tiles internal and external consumers markets, it has debtor the industries to invest in sophisticated products each time more, either in design or the technology, but, mainly, in its final properties. Amongst the diverse types of ceramic coating, the porcelanato if has detached had to its process of technological production and excellent characteristics techniques. The Porcelanato is currently the material for coatings that presents the best technical and aesthetic features when compared with others ceramics found on the market. The chemical composition and the others raw materials characteristics have an importance that must to be ally to the inherent characteristics of fabrication process, essentially those related to the cycle of burning. This work had as purpose to develop formularizations of ceramic mass for production of porcelanato without glass coating, pertaining to the group BIa (text of absorption of water ≤ 0.5%) and with resistance superior mechanics 35MPa from raw materials characterized. The ceramic raw materials selected to the development of this study (A1 and A2 clays, feldspate, talc and quartz) were submitted to the following tests: X-ray fluorescence - chemical analysis determination; X-ray diffraction - Analysis of the stages mineralogics; Laser granulometry - size distribution of particles; and Differential thermal analysis - thermal behavior. Were performed tests of absorption of water, lineal retraction of it burns, apparent specific mass and rupture tension the flexing. The results had evidenced that the formularizations that had the A1 clay and talc on its composition were efficient for the porcelanato production remaining their technological characteristics inside of the intervals of variation desired by the Norms of the ABNT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional ceramics have an important role in the economy of Rio Grande do Norte. The local industries manufacture over 50 million shingles a month, corresponding to 60% of their overall production. As a result of processing flaws, roughly 20% of the production must be discarded, since little or no use has been envisaged for such fired components. Therefore, the use of this kind of residue, especially in the composition of other ceramic materials, comes as an interesting option from the economical and environmental point of view. In this scenario, the objective of the present study was to assess the effect of the addition of fired shingle waste in the composition of porcelainized stoneware tiles. To that end, two porcelainized stoneware tiles compositions were initially prepared. Subsequently, contents from 10 to 30% of roofing tiles chamote were added to each one of them. All raw materials and grog were characterized by FRX, XRD, and thermal analysis. The ceramics were fired using natural gas for 30 min at different temperatures, i.e. 1150, 1200 and 1250ºC, and fully characterized. The addition of roofing tiles chamote resulted in composition with superior properties compared to additive-free compositions. Porcelainized stoneware tiles products that fulfill required standards for practical applications were achieved