946 resultados para Dynamic Flow Estimation
Resumo:
This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex in a rotating system. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when modelling the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation, increasing the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from areas of low circulation generation to areas of high circulation generation, acting to reduce local circulation and stabilise the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance. Therefore, an understanding of this phenomenon has the potential to facilitate optimised wind turbine design.
Resumo:
As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.
Resumo:
In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
Understanding the dynamics of blood cells is a crucial element to discover biological mechanisms, to develop new efficient drugs, design sophisticated microfluidic devices, for diagnostics. In this work, we focus on the dynamics of red blood cells in microvascular flow. Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. We investigate the development of blood flow and its resistance starting from a dispersed configuration of red blood cells in simulations for different hematocrits, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow, which allows an estimation of the length of a vessel required for full flow development, $l_c \approx 25D$, with vessel diameter $D$. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length $l_c$. The presence of aggregation interactions between red blood cells lead in general to a reduction of blood flow resistance. The development of the cell-free layer thickness looks similar for both cases with and without aggregation interactions. Although, attractive interactions result in a larger cell-free layer plateau values. However, because the aggregation forces are short-ranged at high enough shear rates ($\bar{\dot{\gamma}} \gtrsim 50~\text{s}^{-1}$) aggregation of red blood cells does not bring a significant change to the blood flow properties. Also, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness with respect to flow rate assuming steady-state flow. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells. Finally, we investigate segregation phenomena in blood as a two-component suspension under Poiseuille flow, consisting of red blood cells and target cells. The spatial distribution of particles in blood flow is very important. For example, in case of nanoparticle drug delivery, the particles need to come closer to microvessel walls, in order to adhere and bring the drug to a target position within the microvasculature. Here we consider that segregation can be described as a competition between shear-induced diffusion and the lift force that pushes every soft particle in a flow away from the wall. In order to investigate the segregation, on one hand, we have 2D DPD simulations of red blood cells and target cell of different sizes, on the other hand the Fokker-Planck equation for steady state. For the equation we measure force profile, particle distribution and diffusion constant across the channel. We compare simulation results with those from the Fokker-Planck equation and find a very good correspondence between the two approaches. Moreover, we investigate the diffusion behavior of target particles for different hematocrit values and shear rates. Our simulation results indicate that diffusion constant increases with increasing hematocrit and depends linearly on shear rate. The third part of the study describes development of a simulation model of complex vascular geometries. The development of the model is important to reproduce vascular systems of small pieces of tissues which might be gotten from MRI or microscope images. The simulation model of the complex vascular systems might be divided into three parts: modeling the geometry, developing in- and outflow boundary conditions, and simulation domain decomposition for an efficient computation. We have found that for the in- and outflow boundary conditions it is better to use the SDPD fluid than DPD one because of the density fluctuations along the channel of the latter. During the flow in a straight channel, it is difficult to control the density of the DPD fluid. However, the SDPD fluid has not that shortcoming even in more complex channels with many branches and in- and outflows because the force acting on particles is calculated also depending on the local density of the fluid.
Resumo:
BACKGROUND: Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. METHODS: Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). RESULTS: Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). CONCLUSIONS: Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.
Resumo:
The purification of B-phycoerythrin from a concentrated extract of disrupted Porphyridium cruentum cells was carried out using a new vortex flow reactor design for protein purification. The reactor behaved as an expanded bed in the laminar vortices flow regime where the Streamline DEAE resin was expanded by the axial flow and stabilized by the vortex flow. After the broth culture was centrifuged and resuspended in the adsorption buffer, the concentrated extract of disrupted cells was directly loaded into the vortex flow reactor. The purification of B-phycoerythrin was carried out in two steps: adsorption in the expanded bed and elution from the settled bed. 142.0 mg of B-phycoerythrin was eluted representing a total recovery yield of 86.6%. Prior to B-phycoerythrin purification, the protein adsorption of the vortex flow reactor was characterized through hydrodynamic studies and a dynamic capacity measurement using a standard protein.
Resumo:
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. Motion capture of a free flying insect is considered by using three synchronized high-speed cameras. A solid finite element representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. An objective function is formulated, and various shape difference definitions are considered. The proposed methodology is first studied for a synthetic case of a flexible cantilever structure undergoing large deformations, and then applied to a Manduca Sexta (hawkmoth) in free flight. The three-dimensional motions of this flapping system are reconstructed from image date collected by using three cameras. The complete deformation geometry of this system is analyzed. Finally, a computational investigation is carried out to understand the flow physics and aerodynamic performance by prescribing the body and wing motions in a fluid-body code. This thesis work contains one of the first set of such motion visualization and deformation analyses carried out for a hawkmoth in free flight. The tools and procedures used in this work are widely applicable to the studies of other flying animals with flexible wings as well as synthetic systems with flexible body elements.
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.
Resumo:
Excess nutrient loads carried by streams and rivers are a great concern for environmental resource managers. In agricultural regions, excess loads are transported downstream to receiving water bodies, potentially causing algal blooms, which could lead to numerous ecological problems. To better understand nutrient load transport, and to develop appropriate water management plans, it is important to have accurate estimates of annual nutrient loads. This study used a Monte Carlo sub-sampling method and error-corrected statistical models to estimate annual nitrate-N loads from two watersheds in central Illinois. The performance of three load estimation methods (the seven-parameter log-linear model, the ratio estimator, and the flow-weighted averaging estimator) applied at one-, two-, four-, six-, and eight-week sampling frequencies were compared. Five error correction techniques; the existing composite method, and four new error correction techniques developed in this study; were applied to each combination of sampling frequency and load estimation method. On average, the most accurate error reduction technique, (proportional rectangular) resulted in 15% and 30% more accurate load estimates when compared to the most accurate uncorrected load estimation method (ratio estimator) for the two watersheds. Using error correction methods, it is possible to design more cost-effective monitoring plans by achieving the same load estimation accuracy with fewer observations. Finally, the optimum combinations of monitoring threshold and sampling frequency that minimizes the number of samples required to achieve specified levels of accuracy in load estimation were determined. For one- to three-weeks sampling frequencies, combined threshold/fixed-interval monitoring approaches produced the best outcomes, while fixed-interval-only approaches produced the most accurate results for four- to eight-weeks sampling frequencies.
Resumo:
International audience
Resumo:
Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer rates and have been identified as a most promising technology for integration into compact cold plates. Unfortunately, the absence of phenomenological insights and physical models hinders the extrapolation of grooved-tube performance to new applications. The success of regime-based heat transfer correlations for smooth tubes has motivated the current effort to explore the relationship between flow regimes and enhanced heat transfer in internally-grooved tubes. In this thesis, a detailed analysis of smooth and internally-grooved tube data reveals that performance improvement in internally-grooved tubes at low-to-intermediate mass flux is a result of early flow regime transition. Based on this analysis, a new flow regime map and corresponding heat transfer coefficient correlation, which account for the increased wetted angle, turbulence, and Gregorig effects unique to internally-grooved tubes, were developed. A two-phase test facility was designed and fabricated to validate the newly-developed flow regime map and regime-based heat transfer coefficient correlation. As part of this setup, a non-intrusive optical technique was developed to study the dynamic nature of two-phase flows. It was found that different flow regimes result in unique temporally varying film thickness profiles. Using these profiles, quantitative flow regime identification measures were developed, including the ability to explain and quantify the more subtle transitions that exist between dominant flow regimes. Flow regime data, based on the newly-developed method, and heat transfer coefficient data, using infrared thermography, were collected for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities approaching 1. In total, over 6500 combined data points for the adiabatic and diabatic smooth and internally-grooved tubes were acquired. Based on results from the experiments and a reinterpretation of data from independent researchers, it was established that heat transfer enhancement in internally-grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime transition to Annular flow. The regime-based heat transfer coefficient outperformed empirical correlations from the literature, with mean and absolute deviations of 4.0% and 32% for the full range of data collected.
Resumo:
Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.
Resumo:
When performing Particle Image Velocimetry (PIV) measurements in complex fluid flows with moving interfaces and a two-phase flow, it is necessary to develop a mask to remove non-physical measurements. This is the case when studying, for example, the complex bubble sweep-down phenomenon observed in oceanographic research vessels. Indeed, in such a configuration, the presence of an unsteady free surface, of a solid–liquid interface and of bubbles in the PIV frame, leads to generate numerous laser reflections and therefore spurious velocity vectors. In this note, an image masking process is developed to successively identify the boundaries of the ship and the free surface interface. As the presence of the solid hull surface induces laser reflections, the hull edge contours are simply detected in the first PIV frame and dynamically estimated for consecutive ones. As for the unsteady surface determination, a specific process is implemented like the following: i) the edge detection of the gradient magnitude in the PIV frame, ii) the extraction of the particles by filtering high-intensity large areas related to the bubbles and/or hull reflections, iii) the extraction of the rough region containing these particles and their reflections, iv) the removal of these reflections. The unsteady surface is finally obtained with a fifth-order polynomial interpolation. The resulted free surface is successfully validated from the Fourier analysis and by visualizing selected PIV images containing numerous spurious high intensity areas. This paper demonstrates how this data analysis process leads to PIV images database without reflections and an automatic detection of both the free surface and the rigid body. An application of this new mask is finally detailed, allowing a preliminary analysis of the hydrodynamic flow.