970 resultados para DRY motif
Resumo:
The purpose of this study was to analyze the influence of lactation and dry period in the constituents of lipid and glucose metabolism of buffaloes. One hundred forty-seven samples of serum and plasma were collected between November 2009 and July 2010, from properties raising Murrah, Mediterranean and crossbred buffaloes, located in the State of Sao Paulo, Brazil. Biochemical analysis was obtained by determining the contents of serum cholesterol, triglycerides, beta-hydroxybutyrate (β-HBO), non-esterified fatty acids (NEFA) and plasma glucose. Values for arithmetic mean and standard error mean were calculated using the SAS procedure, version 9.2. Tests for normality of residuals and homogeneity of variances were performed using the SAS Guide Data Analysis. Data were analyzed by ANOVA using the SAS procedure Glimmix. The group information (Lactation), Farm and Age were used in the statistical models. Means of groups were compared using Least Square Means (LSMeans) of SAS, where significant difference was observed at P ≤ 0.05. It was possible to conclude that buffaloes during peak lactation need to metabolize body reserves to supplement the lower amounts of bloodstream lipids, when they remain in negative energy balance. In the dry period, there were significant changes in the lipid profile, characterized by decrease of nutritional requirements, with consequent improvement in the general conditions of the animals.
Resumo:
Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.
Resumo:
The interactions between outdoor bronzes and the environment, which lead to bronze corrosion, require a better understanding in order to design effective conservation strategies in the Cultural Heritage field. In the present work, investigations on real patinas of the outdoor monument to Vittorio Bottego (Parma, Italy) and laboratory studies on accelerated corrosion testing of inhibited (by silane-based films, with and without ceria nanoparticles) and non-inhibited quaternary bronzes are reported and discussed. In particular, a wet&dry ageing method was used both for testing the efficiency of the inhibitor and for patinating bronze coupons before applying the inhibitor. A wide range of spectroscopic techniques has been used, for characterizing the core metal (SEM+EDS, XRF, AAS), the corroded surfaces (SEM+EDS, portable XRF, micro-Raman, ATR-IR, Py-GC-MS) and the ageing solutions (AAS). The main conclusions were: 1. The investigations on the Bottego monument confirmed the differentiation of the corrosion products as a function of the exposure geometry, already observed in previous works, further highlighting the need to take into account the different surface features when selecting conservation procedures such as the application of inhibitors (i.e. the relative Sn enrichment in unsheltered areas requires inhibitors which effectively interact not only with Cu but also with Sn). 2. The ageing (pre-patination) cycle on coupons was able to reproduce the relative Sn enrichment that actually happens in real patinated surfaces, making the bronze specimens representative of the real support for bronze inhibitors. 3. The non-toxic silane-based inhibitors display a good protective efficiency towards pre-patinated surfaces, differently from other widely used inhibitors such as benzotriazole (BTA) and its derivatives. 4. The 3-mercapto-propyl-trimethoxy-silane (PropS-SH) additivated with CeO2 nanoparticles generally offered a better corrosion protection than PropS-SH.
Resumo:
In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.
Resumo:
Dry limited amplitude vibrations flow-transition induced vibrations were experienced on a helically-filleted tube, in a previous study performed by Kleissl and Georgakis (2012). These vibrations have never been reported in previous studies. A deep study on the same inclined-yawed cable configuration has been performed, in order to investigate and further understand the nature of these vibrations. The investigation has been carried out through passive-dynamic wind tunnel tests in the Climatic Wind Tunnel at FORCE Technology, Kgs. Lyngby, Denmark. The results are carried out in terms of aerodynamic damping and peak to peak amplitude at different flow velocities and different boundary conditions. The latter are done by testing the model with and without the spray system installed in the wind tunnel cross section, in order to understand and evaluate the influence of the spray system on the start of the vibrations mechanism and on the flow turbulence. The gained experiences are finally presented for the use in future testing activities with the purpose of improving the performance of passive-dynamic tests.
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.
Resumo:
Rationale Mannitol dry powder (MDP) challenge is an indirect bronchial provocation test, which is well studied in adults but not established for children. Objective We compared feasibility, validity, and clinical significance of MDP challenge with exercise testing in children in a clinical setting. Methods Children aged 6–16 years, referred to two respiratory outpatient clinics for possible asthma diagnosis, underwent standardized exercise testing followed within a week by an MDP challenge (Aridol™, Pharmaxis, Australia). Agreement between the two challenge tests using Cohen's kappa and receiving operating characteristic (ROC) curves was compared. Results One hundred eleven children performed both challenge tests. Twelve children were excluded due to exhaustion or insufficient cooperation (11 at the exercise test, 1 at the MDP challenge), leaving 99 children (mean ± SD age 11.5 ± 2.7 years) for analysis. MDP tests were well accepted, with minor side effects and a shorter duration than exercise tests. The MDP challenge was positive in 29 children (29%), the exercise test in 21 (21%). Both tests were concordant in 83 children (84%), with moderate agreement (κ = 0.58, 95% CI 0.39–0.76). Positive and negative predictive values of the MDP challenge for exercise-induced bronchoconstriction were 68% and 89%. The overall ability of MDP challenge to separate children with or without positive exercise tests was good (area under the ROC curve 0.83). Conclusions MDP challenge test is feasible in children and is a suitable alternative for bronchial challenge testing in childhood. Pediatr. Pulmonol. 2011; 46:842–848. © 2011 Wiley-Liss, Inc.
Resumo:
Lipoprotein T (LppT), a membrane-located 105-kDa lipoprotein of Mycoplasma conjunctivae, the etiological agent of infectious keratoconjunctivitis (IKC) of domestic sheep and wild Caprinae, was characterized. LppT was shown to promote cell attachment to LSM 192 primary lamb joint synovial cells. Adhesion of M. conjunctivae to LSM 192 cells is inhibited by antibodies directed against LppT. The RGD (Arg-Gly-Asp) motif of LppT was found to be a specific site for binding of M. conjunctivae to these eukaryotic host cells. Recombinant LppT fixed to polymethylmethacrylate slides binds LSM 192 cells, whereas LppT lacking the RGD site is deprived of binding capacity to LSM 192, and LppT containing RGE rather than RGD shows reduced binding. Synthetic nonapeptides derived from LppT containing RGD competitively inhibit binding of LSM 192 cells to LppT-coated slides, whereas nonapeptides containing RAD rather than RGD do not inhibit. RGD-containing, LppT-derived nonapeptides are able to directly inhibit binding of M. conjunctivae to LSM 192 cells by competitive inhibition, whereas the analogous nonapeptide containing RAD rather than RGD or the fibronectin-derived RGD hexapeptide has no inhibitory effect. These results reveal LppT as the first candidate of a RGD lectin in Mycoplasma species that is assumed to bind to beta integrins.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.