990 resultados para DNA chip
Resumo:
The ability of DNA sequences to adopt unusual structures under the superhelical torsional stress has been studied. Sequences that are forced to adopt unusual conformation in topologically constrained pBR322 form V DNA (Lk=0) were mapped using restriction enzymes as probes. Restriction enzymes such as BamHI, Pstl, Aval and HindIII could not cleave their recognition sequences. The removal of topological constraint relieved this inhibition. The influence of neighbouring sequences on the ability of a given sequence to adopt unusual DNA structure, presumably left handed Z conformation, was studied through single hit analysis. Using multiple cut restriction enzymes such as Narl and Fspl, it could be shown that under identical topological strain, the extent of structural alteration is greatly influenced by the neighbouring sequences. In the light of the variety of sequences and locations that could be mapped to adopt non-6 conformation in pBR322 form V DNA, restriction enzymes appear as potential structural probes for natural DNA sequences.
Resumo:
The importance and usefulness of local doublet parameters in understanding sequence dependent effects has been described for A- and B-DNA oligonucleotide crystal structures. Each of the two sets of local parameters described by us in the NUPARM algorithm, namely the local doublet parameters, calculated with reference to the mean z-axis, and the local helical parameters, calculated with reference to the local helix axis, is sufficient to describe the oligonucleotide structures, with the local helical parameters giving a slightly magnified picture of the variations in the structures. The values of local doublet parameters calculated by NUPARM algorithm are similar to those calculated by NEWHELIX90 program, only if the oligonucleotide fragment is not too distorted. The mean values obtained using all the available data for B-DNA crystals are not significantly different from those obtained when a limited data set is used, consisting only of structures with a data resolution of better than 2.4 A and without any bound drug molecule. Thus the variation observed in the oligonucleotide crystals appears to be independent of the quality of their crystallinity. No strong correlation is seen between any pair of local doublet parameters but the local helical parameters are interrelated by geometric relationships. An interesting feature that emerges from this analysis is that the local rise along the z-axis is highly correlated with the difference in the buckle values of the two basepairs in the doublet, as suggested earlier for the dodecamer structures (Bansal and Bhattacharyya, in Structure & Methods: DNA & RNA, Vol. 3 (Eds., R.H. Sarma and M.H. Sarma), pp. 139-153 (1990)). In fact the local rise values become almost constant for both A- and B-forms, if a correction is applied for the buckling of the basepairs. In B-DNA the AA, AT, TA and GA basepair sequences generally have a smaller local rise (3.25 A) compared to the other sequences (3.4 A) and this seems to be an intrinsic feature of basepair stacking interaction and not related to any other local doublet parameter. The roll angles in B-DNA oligonucleotides have small values (less than +/- 8 degrees), while mean local twist varies from 24 degrees to 45 degrees. The CA/TG doublet sequences show two types of preferred geometries, one with positive roll, small positive slide and reduced twist and another with negative roll, large positive slide and increased twist.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.
Resumo:
The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.
Resumo:
The silk glands of Bombyx mori, a highly replicative tissue contains high levels of DNA polymerases α, σ and epsilon (Porson) but not DNA polymerase-β. However, we detected the latter activity in the gonadal tissues, viz. the pupal ovaries and testes of B. mori. The enzyme has been purified to homogeneity from the pupal ovaries by a series of column chromatographic and affinity purification steps. The enzyme satisfied the criteria to be designated as DNA polymerase-β based on its small size, requirement for high concentration of monovalent cations for catalytic activity, sensitivity to ddTTP and insensitivity to aphidicolin. It is a monomeric polypeptide of Mr 40 kDa, and the Km for dNTPs ranges between 8–20 μM. DNA polymerase-β is biochemically and immunologically distinct from DNA polymerase-α from the silk glands of B. mori. The enzyme showed a preference for gapped DNA, and could not elongate ultraviolet irradiated template beyond the pyrimidine dimers. The absence of any associated primase and exonuclease activities from this enzyme, and its conspicuous absence in the highly replicative tissue, imply that it is unlikely to participate in the DNA endoreplication process.
Resumo:
The silk gland of Bombyx mori, an endomitotically replicative tissue shows high levels of DNA polymerases alpha, delta, and epsilon activities. The ratio of polymerase alpha to that of delta plus epsilon is maintained at 1.1 to 1.3 in both the posterior and middle silk glands for the entire duration of late larval development. The three activities copurify in the initial stages of fractionation through phosphocellulose and DE52 but polymerase alpha gets resolved from the others on hydroxylapatite column. Separation between polymerase delta and epsilon is achieved by chromatography on QAE-Sephadex. DNA polymerase epsilon is a heterodimer comprising of 215- and 42-kDa subunits. The activity is maximum at pH 6.5 and the Km values for dNTPs vary between 3-9 microM. The enzyme possesses an intrinsically associated exonuclease activity which functions in the mismatch repair during DNA synthesis. Both polymerase and 3'-->5' exonuclease activities are associated with the 215-kDa subunit. By itself, DNA polymerase epsilon is processive and the catalytic activity is not enhanced by externally added bPCNA (Bombyx-proliferating cell nuclear antigen, an auxiliary protein for DNA polymerase delta). The enzyme resembles polymerase delta in having the exonuclease activity and in its response to aphidicolin or substrate analogs, but could be distinguished from the latter by its lack of response to the bPCNA and sensitivity to dimethyl sulfoxide. The two enzymes show partial immunological cross-reactivity with each other but no immunological relatedness to polymerase alpha. The absence of the repair enzyme DNA polymerase beta and the presence of substantial levels of polymerase epsilon in the silk glands suggest a possible role for the latter in DNA repair in that tissue.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
Structure at the polypurine-polypyrimidine sequences flanking the HpaII sites (CCGG) in pBR322 form V DNA was probed employing single-hit analysis using HpaII restriction endonuclease. Reduced cleavage efficiency of HpaII sites flanked by polypurine-polypyrimidine sequences suggested that under high torsional stress these sequences adopt unwound structures rendering these sites insensitive to restriction enzyme cleavage. In addition to polypurine-polypyrimidine sequences. HpaII sites flanked by alternating purine-pyrimidine sequence, a potential motif of left handed Z-DNA, were also found to be resistant to HpaII cleavage. Results obtained from various studies implicating structure sensitivity of restriction endonucleases and methylases were compiled and a direct correlation was observed between the occurrence of altered sites in a domain and its G/C content in pBR322 form V DNA.
Resumo:
At physiological pH, a PAMAM dendrimer is positively charged and can effectively bind negatively charged DNA. Currently, there has been great interest in understanding this complexation reaction both for fundamental (as a model for complex biological reactions) as well as for practical (as a gene delivery material and probe for sensing DNA sequence) reasons. Here, we have studied the complexation between double-stranded DNA (dsDNA) and various generations of PAMAM dendrimers (G3-05) through atomistic molecular dynamics simulations in the presence of water and ions. We report the compaction of DNA on a nanosecond time scale. This is remarkable, given the fact that such a short DNA duplex with a length close to 13 nm is otherwise thought to be a rigid rod. Using several nanoseconds long MD simulations, we have observed various binding modes of dsDNA and dendrimers for various generations of PAMAM dendrimers at varying charge ratios, and it confirms some of the binding modes proposed earlier. The binding is driven by the electrostatic interaction, and the larger the dendrimer charge, the stronger the binding affinity. As DNA wraps/binds to the dendrimer, counterions originally condensed onto DNA (Na+) and the dendrimer (Cl-) get released. We calculate the entropy of counterions and show that there is gain in entropy due to counterion release during the complexation. MD simulations demonstrate that, when the charge ratio is greater than 1 (as in the case of the G5 dendrimer), the optimal wrapping of DNA is observed. Calculated binding energies of the complexation follow the trend G5 > 04 > 03, in accordance with the experimental data. For a lower-generation dendrimer, such as G3, and, to some extent, for G4 also, we see considerable deformation in the dendrimer structure due to their flexible nature. We have also calculated the various helicoidal parameters of DNA to study the effect of dendrimer binding on the structure of DNA. The B form of the DNA is well preserved in the complex, as is evident from various helical parameters, justifying the use of the PAMAM dendrimer as a suitable delivery vehicle.
Resumo:
Background: A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. Results: In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. Conclusions: Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique `template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.