951 resultados para Cyclic hardening and softening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)2][Fe(hapto4-P2C2tBu2)2] (K1), [K([18]crown-6)(thf)2][C(h4-P2C2tBu2)2] (K2), and [K([18]crown-6)(thf)2][Co(hapto4-P2C2Ad2)2] (K3, Ad=adamantyl) were obtained from reactions of [K([18crown-6)(thf)2][M(hapto4-C14H10)2] (M=Fe, Co) with tBuCP (1, 2), or with AdCP (3). Neutral sandwiches [M(hapto4-P2C2tBu2)2] (4: M=Fe 5: M=Co) were obtained by oxidizing 1 and 2 with [Cp2Fe]PF6. Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(hapto4-P2C2tBu2)2]-/[M(hapto4-P2C2tBu2)2] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1–5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis,and Moessbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1–3). The molecular structures of 1–5 were determined by using X-ray crystallography. Essentially D2d-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal–ligand pi bonding in 1–5. Possible oxidation state assignments for the metal ions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peculiar reduction pathways of the complexes fac-[Re(imH)(CO)3(phen)]+ and fac-[Re(imCH3)(CO)3(phen)]+ (imH = imidazole, imCH3 = N-methylimidazole and phen = 1,10-phenanthroline) have been unravelled by performing combined cyclic voltammetric and in situ IR spectroelectrochemical experiments. In the temperature range of 293–233 K, the initial reduction of the phen ligand in [Re(imH)(CO)3(phen)]+ results in irreversible conversion of the imidazole ligand to 3-imidazolate by a rapid phen•−→ imH intramolecular electron transfer coupled with N H bond cleavage. This process is followed by second phen-localized 1e− reduction producing [ReI(3-im−)(CO)3(phen•−)]−, similar to the analogous 2,2'-bipyridine complex. In contrast to the bpy analogue, the stability of the phen•−-containing complexes is significantly affected by lowering the temperature. At 233 K, a secondary reaction occurs in both [Re(3-im−)(CO)3(phen•−)]− and [Re(imCH3)(CO)3(phen•−)]. The resulting products exhibit v(CO) wavenumbers indistinguishable from those of the parent phen•− complexes; however, their oxidation occurs at a considerably more positive electrode potential. It is proposed that these species are produced by a new C C bond formation between the C(2) site of 3-im− or imCH3 and the C(2) site of the phen•−ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic voltammetry and ultraviolet−visible/infrared (UV−vis/IR) spectroelectrochemistry were used to study the cathodic electrochemical behavior of the osmium complexes mer-[OsIII(CO) (bpy)Cl3] (bpy = 2,2′-bipyridine) and trans(Cl)-[OsII(CO) (PrCN)(bpy)Cl2] at variable temperature in different solvents (tetrahydrofuran (THF), butyronitrile (PrCN), acetonitrile (MeCN)) and electrolytes (Bu4NPF6, Bu4NCl). The precursors can be reduced to mer-[OsII(CO) (bpy•−)Cl3]2− and trans(Cl)-[OsII(CO)(PrCN) (bpy•−)Cl2]−, respectively, which react rapidly at room temperature, losing the chloride ligands and forming Os(0) species. mer-[OsIII(CO) (bpy)Cl3] is reduced in THF to give ultimately an Os−Os-bonded polymer, probably [Os0(CO) (THF)-(bpy)]n, whereas in PrCN the well-soluble, probably mononuclear [Os0(CO) (PrCN)(bpy)], species is formed. The same products were observed for the 2 electron reduction of trans(Cl)-[OsII(CO)(PrCN) (bpy)Cl2] in both solvents. In MeCN, similar to THF, the[Os0(CO) (MeCN)(bpy)]n polymer is produced. It is noteworthy that the bpy ligand in mononuclear [Os0(CO) (PrCN)(bpy)] is reduced to the corresponding radical anion at a significantly less negative potential than it is in polymeric [Os0(CO) (THF)(bpy)]n: ΔE1/2 = 0.67 V. Major differences also exist in the IR spectra of the Os(0) species: the polymer shows a broad ν(CO) band at much smaller wavenumbers compared to the soluble Os(0) monomer that exhibits a characteristic ν(Pr-CN) band below 2200 cm−1 in addition to the intense and narrow ν(CO) absorption band. For the first time, in this work the M0-bpy(M = Ru, Os) mono- and dicarbonyl species soluble in PrCN have been formulated as a mononuclear complex. Density functional theory (DFT) and time-dependent-DFT calculations confirm the Os(0) oxidation state and suggest that [Os0(CO)(PrCN)(bpy)] is a square planar moiety. The reversible bpy-based reduction of [Os0(CO) (PrCN)(bpy)] triggers catalytic reduction of CO2 to CO and HCOO−.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-diamines, such as ethylendiamine and o-phenylendiamine, add to 3,4-aryl-disubstituted 1,2,5-thiadiazole 1,1-dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6-b]-2,3-dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide gives 3,4-disubstituted thiadiazoildine 1,1-dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of routing protocols for mobile wireless networks is a difficult task, because of the networks` dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and some delay tolerant networks (DTNs), have more predictable dynamics, as the temporal variations in the network topology can be considered as deterministic, which may make them easier to study. Recently, a graph theoretic model-the evolving graphs-was proposed to help capture the dynamic behavior of such networks, in view of the construction of least cost routing and other algorithms. The algorithms and insights obtained through this model are theoretically very efficient and intriguing. However, there is no study about the use of such theoretical results into practical situations. Therefore, the objective of our work is to analyze the applicability of the evolving graph theory in the construction of efficient routing protocols in realistic scenarios. In this paper, we use the NS2 network simulator to first implement an evolving graph based routing protocol, and then to use it as a benchmark when comparing the four major ad hoc routing protocols (AODV, DSR, OLSR and DSDV). Interestingly, our experiments show that evolving graphs have the potential to be an effective and powerful tool in the development and analysis of algorithms for dynamic networks, with predictable dynamics at least. In order to make this model widely applicable, however, some practical issues still have to be addressed and incorporated into the model, like adaptive algorithms. We also discuss such issues in this paper, as a result of our experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PtSn/CeO(2)-C electrocatalyst was prepared in a single step by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and CeO(2) (15 wt%) and Vulcan XC72 (85 wt%) as supports. The performance for ethanol oxidation was investigated by cyclic voltammetry and in situ FTIR spectroscopy. The electrocatalytic activity of the PtSn/CeO(2)-C electrocatalyst was higher than that of the PtSn/C electrocatalyst. FTIR studies for ethanol oxidation on PtSn/C electrocatalyst showed that acetaldehyde and acetic acid were the principal products formed, while on PtSn/CeO(2)-C electrocatalyst the principal products formed were CO(2) and acetic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphite-polyurethane composite electrode has been used for the determination of furosemide, a antihypertensive drug, in pharmaceutical samples by anodic oxidation. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrooxidation process at +1.0 V vs. SCE over a wide pH range, with the result that no adsorption of analyte or products occurs, unlike at other carbon-based electrode materials. Quantification was carried out using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry. Linear ranges were determined (up to 21 mu mol L-1 with cyclic voltammetry) as well as limits of detection (0.15 mu mol L-1 by differential pulse voltammetry). Four different types of commercial samples were successfully analyzed. Recovery tests were performed which agreed with those obtained by spectrophotometric evaluation. The advantages of this electrode material for repetitive analyzes, due to the fact that no electrode surface renewal is needed owing to the lack of adsorption, are highlighted.