458 resultados para Cousinia, Systematik, Phylogenie
Resumo:
"Collection of reprints from Zeitschrift für wissenschaftliche zoologie und zoologischer anzeiger."
Resumo:
Title from cover.
Resumo:
"Verzeichniss der im Texte mit Ziffern angeführten Schriften, deren Studium dem Leser zu empfehlen ist": p. 796-801.
Resumo:
Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.
Resumo:
A total of 117 samples of quarternary sediments, mostly sands, from a region NW of Hannover (Lower Saxony) has been investigated with regard to their content of heavy minerals. The absolute percentage of transparent heavy minerals approximates 0.2 Vol.%. If several samples of glaciofluvial sands (Drenthe-stage) or dune sands (Late Weichsel-stage to Holocene) are taken from one outcrop they show great similarities in their heavy minerals contents. Glaciofluvial sands of the Elster-stage evidently have less Garnet, Hornblende and minerals of volcanic origin (Augite, partly also Orthopyroxenes, Oxyhornblende and Olivine) than those of the Drenthe-stage, Weichsel-stage, and the Holocene. All these groups hold nearly the same average assemblages of heavy mineral, thus indicating that within the Drenthe-stage or later material from north and from south has been mixed and/or reworked. In the area investigated the proportions of heavy minerals do not help to identify either the stratigraphic position or the way of deposition of different sandy sediments younger than the Elster-stage. The distributional pattern of several heavy minerals point out that Kyanite, Hornblende and Epidote have been transported predominantly from the north, whereas Garnet and Staurolite have sources both in the north and the south. Tourmaline, Apatite and the minerals of volcanic origin mainly must be derived from the south. All results obtained in the region examined should not be transferred to other zones of the lowlands of Northern Germany automatically.
Resumo:
Im Grubenfeld "Konrad" der Salzgitter-Erzbergbau AG bei Salzgitter-Bleckenstedt wurde ein 62 m mächtiges, von den Ornaten-Schichten (Mittel-Callovium, coronaten-Zone) bis an die Basis des Mittleren Korallenoolith (Mittel-Oxfordium, plicatilis-Zone oder Ober-Oxfordium, cautisnigrae-Zone) reichendes Profil aufgenommen und untersucht. Die Mächtigkeit der Heersumer Schichten beträgt nur 1,5 m, die des Unteren Korallenoolith ca. 60 m. Im Gegensatz zum nördlichen Teil des Gifhorner Troges (SEITZ 1950) ist die Mächtigkeit der Heersumer Schichten im südlichen Teil also erheblich geringer. Der Untere Korallenoolith ist in beiden Vorkommen etwa gleichmächtig entwickelt. Die Schichtlücke zwischen Mittel-Callovium und Unter-Oxfor- dium, die im untersuchten Profil nachgewiesen werden konnte, tritt auch am nördlichen Harzrand in der Grube "Hansa" (DENG- LER 1954) und im Wiehengebirge (LANGE 1971) auf. Offensichtlich ist sie jedoch nur lokal entwickelt, denn im Hildesheimer Jurazug (VINKEN 1974, 1975), im nördlichen Teil des Gifhorner Troges (SEITZ 1950) und am nördlichen Harzrand in unmittelbarer Nähe der Grube "Hansa" (s.o.) liegen lückenlose Profile vor. Daß diese Schichtlücken auch im Südteil des Gifhorner Troges auftreten, spricht für ein späteres Einsetzen der Trogtendenz in diesem Gebiet. Die untersuchten Schichten stimmen in ihren wesentlichen faziellen und petrographischen Merkmalen mit benachbarten Vorkommen überein. Die Zyklen im Unteren Korallenoolith werden als Ergebnis sich ablösender Transgressions- und Regressionsphasen gedeutet.
Resumo:
Phylogenetic inference consist in the search of an evolutionary tree to explain the best way possible genealogical relationships of a set of species. Phylogenetic analysis has a large number of applications in areas such as biology, ecology, paleontology, etc. There are several criterias which has been defined in order to infer phylogenies, among which are the maximum parsimony and maximum likelihood. The first one tries to find the phylogenetic tree that minimizes the number of evolutionary steps needed to describe the evolutionary history among species, while the second tries to find the tree that has the highest probability of produce the observed data according to an evolutionary model. The search of a phylogenetic tree can be formulated as a multi-objective optimization problem, which aims to find trees which satisfy simultaneously (and as much as possible) both criteria of parsimony and likelihood. Due to the fact that these criteria are different there won't be a single optimal solution (a single tree), but a set of compromise solutions. The solutions of this set are called "Pareto Optimal". To find this solutions, evolutionary algorithms are being used with success nowadays.This algorithms are a family of techniques, which aren’t exact, inspired by the process of natural selection. They usually find great quality solutions in order to resolve convoluted optimization problems. The way this algorithms works is based on the handling of a set of trial solutions (trees in the phylogeny case) using operators, some of them exchanges information between solutions, simulating DNA crossing, and others apply aleatory modifications, simulating a mutation. The result of this algorithms is an approximation to the set of the “Pareto Optimal” which can be shown in a graph with in order that the expert in the problem (the biologist when we talk about inference) can choose the solution of the commitment which produces the higher interest. In the case of optimization multi-objective applied to phylogenetic inference, there is open source software tool, called MO-Phylogenetics, which is designed for the purpose of resolving inference problems with classic evolutionary algorithms and last generation algorithms. REFERENCES [1] C.A. Coello Coello, G.B. Lamont, D.A. van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Spring. Agosto 2007 [2] C. Zambrano-Vega, A.J. Nebro, J.F Aldana-Montes. MO-Phylogenetics: a phylogenetic inference software tool with multi-objective evolutionary metaheuristics. Methods in Ecology and Evolution. En prensa. Febrero 2016.