879 resultados para Conflict-based method
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
In this study, dispersive liquid-liquid microextraction based on the solidification of floating organic droplets was used for the preconcentration and determination of thorium in the water samples. In this method, acetone and 1-undecanol were used as disperser and extraction solvents, respectively, and the ligand 1-(2-thenoyl)-3,3,3-trifluoracetone reagent (TTA) and Aliquat 336 was used as a chelating agent and an ion-paring reagent, for the extraction of thorium, respectively. Inductively coupled plasma-optical emission spectrometry was applied for the quantitation of the analyte after preconcentration. The effect of various factors, such as the extraction and disperser solvent, sample pH, concentration of TTA and concentration of aliquat336 were investigated. Under the optimum conditions, the calibration graph was linear within the thorium content range of 1.0-250 µg L-1 with a detection limit of 0.2 µg L-1. The method was also successfully applied for the determination of thorium in the different water samples.
Resumo:
Three recombinant antigens of Treponema pallidum Nichols strain were fused with GST, cloned and expressed in Escherichia coli, resulting in high levels of GST-rTp47 and GST-rTp17 expression, and supplementation with arginine tRNA for the AGR codon was needed to obtain GST-rTp15 overexpression. Purified fusion protein yields were 1.9, 1.7 and 5.3 mg/l of cell culture for GST-rTp47, GST-rTp17 and GST-rTp15, respectively. The identities of the antigens obtained were confirmed by automated DNA sequencing using ABI Prism 310 and peptide mapping by Finningan LC/MS. These recombinant antigens were evaluated by immuno-slot blot techniques applied to 137 serum samples from patients with a clinical and laboratory diagnosis of syphilis (61 samples), from healthy blood donors (50 samples), individuals with sexually transmitted disease other than syphilis (3 samples), and from individuals with other spirochetal diseases such as Lyme disease (20 samples) and leptospirosis (3 samples). The assay had sensitivity of 95.1% (95% CI, 86.1 to 98.7%) and a specificity of 94.7% (95% CI, 87.0 to 98.7%); a stronger reactivity was observed with fraction rTp17. The immunoreactivity results showed that fusion recombinant antigens based-immuno-slot blot techniques are suitable for use in diagnostic assays for syphilis.
Resumo:
Usage of a dielectric multilayer around a dielectric Sample is studied as a means for improving the efficiency in multimode microwave- heating cavities. The results show that by using additional dielectric constant layers the appearance of undesired reflections at the sample-air interface is avoided and higher power -absorption rates within the sample and high -efficiency designs are obtained
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising
Resumo:
Enterprise Modeling (EM) is currently in operation either as a technique to represent and understand the structure and behavior of the enterprise, or as a technique to analyze business processes, and in many cases as support technique for business process reengineering. However, EM architectures and methods for Enterprise Engineering can also used to support new management techniques like SIX SIGMA, because these new techniques need a clear, transparent and integrated definition and description of the business activities of the enterprise to be able to build up, optimize and operate an successful enterprise. The main goal of SIX SIGMA is to optimize the performance of processes. A still open question is: "What are the adequate Quality criteria and methods to ensure such performance? What must we do to get Quality governance?" This paper describes a method including an Enterprise Engineering method and SIX SIGMA strategy to reach Quality Governance
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.