907 resultados para Compressive sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing (RS) techniques have evolved into an important instrument to investigate forest function. New methods based on the remote detection of leaf biochemistry and photosynthesis are being developed and applied in pilot studies from airborne and satellite platforms (PRI, solar-induced fluorescence; N and chlorophyll content). Non-destructive monitoring methods, a direct application of RS studies, are also proving increasingly attractive for the determination of stress conditions or nutrient deficiencies not only in research but also in agronomy, horticulture and urban forestry (proximal RS). In this work I will focus on some novel techniques recently developed for the estimation of photochemistry and photosynthetic rates based (i) on the proximal measurement of steady-state chlorophyll fluorescence yield, or (ii) the remote sensing of changes in hyperspectral leaf reflectance, associated to xanthophyll de-epoxydation and energy partitioning, which is closely coupled to leaf photochemistry and photosynthesis. I will also present and describe a mathematical model of leaf steady-state fluorescence and photosynthesis recently developed in our group. Two different species were used in the experiments: Arbutus unedo, a schlerophyllous Mediterranean species, and Populus euroamericana, a broad leaf deciduous tree widely used in plantation forestry. Results show that ambient fluorescence could provide a useful tool for testing photosynthetic processes from a distance. These results confirm also the photosynthetic reflectance index (PRI) as an efficient remote sensing reflectance index estimating short-term changes in photochemical efficiency as well as long-term changes in leaf biochemistry. The study also demonstrated that RS techniques could provide a fast and reliable method to estimate photosynthetic pigment content and total nitrogen, beside assessing the state of photochemical process in our plants’ leaves in the field. This could have important practical applications for the management of plant cultivation systems, for the estimation of the nutrient requirements of our plants for optimal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente studio si concentra sulle diverse applicazioni del telerilevamento termico in ambito urbano. Vengono inizialmente descritti la radiazione infrarossa e le sue interazioni con l’atmosfera terrestre, le leggi principali che regolano lo scambio di calore per irraggiamento, le caratteristiche dei sensori e le diverse applicazioni di termografia. Successivamente sono trattati nel dettaglio gli aspetti caratteristici della termografia da piattaforma satellitare, finalizzata principalmente alla valutazione del fenomeno dell'Urban Heat Island; vengono descritti i sensori disponibili, le metodologie di correzione per gli effetti atmosferici, per la stima dell'emissività delle superfici e per il calcolo della temperatura superficiale dei pixels. Viene quindi illustrata la sperimentazione effettuata sull'area di Bologna mediante immagini multispettrali ASTER: i risultati mostrano come sull'area urbana sia riscontrabile la presenza dell'Isola di Calore Urbano, anche se la sua quantificazione risulta complessa. Si procede quindi alla descrizione di potenzialità e limiti della termografia aerea, dei suoi diversi utilizzi, delle modalità operative di rilievo e degli algoritmi utilizzati per il calcolo della temperatura superficiale delle coperture edilizie. Tramite l’analisi di alcune esperienze precedenti vengono trattati l’influenza dell’atmosfera, la modellazione dei suoi effetti sulla radianza rilevata, i diversi metodi per la stima dell’emissività. Viene quindi introdotto il progetto europeo Energycity, finalizzato alla creazione di un sistema GeoWeb di supporto spaziale alle decisioni per la riduzione di consumi energetici e produzione di gas serra su sette città dell'Europa Centrale. Vengono illustrate le modalità di rilievo e le attività di processing dei datasets digitali per la creazione di mappe di temperatura superficiale da implementare nel sistema SDSS. Viene infine descritta la sperimentazione effettuata sulle immagini termiche acquisite nel febbraio 2010 sulla città di Treviso, trasformate in un mosaico georiferito di temperatura radiometrica tramite correzioni geometriche e radiometriche; a seguito della correzione per l’emissività quest’ultimo verrà trasformato in un mosaico di temperatura superficiale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis is embedded into the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) and investigates the radiative transfer through Arctic boundary-layer mixed-phase (ABM) clouds. For this purpose airborne spectral solar radiation measurements and simulations of the solar and thermal infrared radiative transfer have been performed. This work reports on measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) conducted in the framework of ASTAR in April 2007 close to Svalbard. For ASTAR the SMART-Albedometer was extended to measure spectral radiance. The development and calibration of the radiance measurements are described in this work. In combination with in situ measurements of cloud particle properties provided by the Laboratoire de M¶et¶eorologie Physique (LaMP) and simultaneous airborne lidar measurements by the Alfred Wegener Institute for Polar and Marine Research (AWI) ABM clouds were sampled. The SMART-Albedometer measurements were used to retrieve the cloud thermodynamic phase by three different approaches. A comparison of these results with the in situ and lidar measurements is presented in two case studies. Beside the dominating mixed-phase clouds pure ice clouds were found in cloud gaps and at the edge of a large cloud field. Furthermore the vertical distribution of ice crystals within ABM clouds was investigated. It was found that ice crystals at cloud top are necessary to describe the observed SMART-Albedometer measurements. The impact of ice crystals on the radiative forcing of ABM clouds is in vestigated by extensive radiative transfer simulations. The solar and net radiative forcing was found to depend on the ice crystal size, shape and the mixing ratio of ice crystals and liquid water droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal, enabling the development of cheap, small, portable and simple devices, that allow multiplex and real-time detection. At the same time nanobiotechnology is drastically revolutionizing the biosensors development and different transduction strategies exploit concepts developed in these field to simplify the analysis operations for operators and end users, offering higher specificity, higher sensitivity, higher operational stability, integrated sample treatments and shorter analysis time. The aim of this PhD work has been the application of nanobiotechnological strategies to electrochemical biosensors for the detection of biological macromolecules. Specifically, one project was focused on the application of a DNA nanotechnology called hybridization chain reaction (HCR), to amplify the hybridization signal in an electrochemical DNA biosensor. Another project on which the research activity was focused concerns the development of an electrochemical biosensor based on a biological model membrane anchored to a solid surface (tBLM), for the recognition of interactions between the lipid membrane and different types of target molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Cognitive Radio è un dispositivo in grado di reagire ai cambiamenti dell’ambiente radio in cui opera, modificando autonomamente e dinamicamente i propri parametri funzionali tra cui la frequenza, la potenza di trasmissione e la modulazione. Il principio di base di questi dispositivi è l’accesso dinamico alle risorse radio potenzialmente non utilizzate, con cui utenti non in possesso di licenze possono sfruttare le frequenze che in un determinato spazio temporale non vengono usate, preoccupandosi di non interferire con gli utenti che hanno privilegi su quella parte di spettro. Devono quindi essere individuati i cosiddetti “spectrum holes” o “white spaces”, parti di spettro assegnate ma non utilizzate, dai quali prendono il nome i dispositivi.Uno dei modi per individuare gli “Spectrum holes” per una Cognitive Radio consiste nel cercare di captare il segnale destinato agli utenti primari; questa tecnica è nota con il nome di Spectrum Sensing e consente di ottenere essenzialmente una misura all’interno del canale considerato al fine di determinare la presenza o meno di un servizio protetto. La tecnica di sensing impiegata da un WSD che opera autonomamente non è però molto efficiente in quanto non garantisce una buona protezione ai ricevitori DTT che usano lo stesso canale sul quale il WSD intende trasmettere.A livello europeo la soluzione che è stata ritenuta più affidabile per evitare le interferenze sui ricevitori DTT è rappresentata dall’uso di un geo-location database che opera in collaborazione con il dispositivo cognitivo.Lo scopo di questa tesi è quello di presentare un algoritmo che permette di combinare i due approcci di geo-location database e Sensing per definire i livelli di potenza trasmissibile da un WSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel nanosized and addressable sensing platform based on membrane coated plasmonic particles for detection of protein adsorption using dark field scattering spectroscopy of single particles has been established. To this end, a detailed analysis of the deposition of gold nanorods on differently functionalized substrates is performed in relation to various factors (such as the pH, ionic strength, concentration of colloidal suspension, incubation time) in order to find the optimal conditions for obtaining a homogenous distribution of particles at the desired surface number density. The possibility of successfully draping lipid bilayers over the gold particles immobilized on glass substrates depends on the careful adjustment of parameters such as membrane curvature and adhesion properties and is demonstrated with complementary techniques such as phase imaging AFM, fluorescence microscopy (including FRAP) and single particle spectroscopy. The functionality and sensitivity of the proposed sensing platform is unequivocally certified by the resonance shifts of the plasmonic particles that were individually interrogated with single particle spectroscopy upon the adsorption of streptavidin to biotinylated lipid membranes. This new detection approach that employs particles as nanoscopic reporters for biomolecular interactions insures a highly localized sensitivity that offers the possibility to screen lateral inhomogeneities of native membranes. As an alternative to the 2D array of gold nanorods, short range ordered arrays of nanoholes in optically transparent gold films or regular arrays of truncated tetrahedron shaped particles are built by means of colloidal nanolithography on transparent substrates. Technical issues mainly related to the optimization of the mask deposition conditions are successfully addressed such that extended areas of homogenously nanostructured gold surfaces are achieved. Adsorption of the proteins annexin A1 and prothrombin on multicomponent lipid membranes as well as the hydrolytic activity of the phospholipase PLA2 were investigated with classical techniques such as AFM, ellipsometry and fluorescence microscopy. At first, the issues of lateral phase separation in membranes of various lipid compositions and the dependency of the domains configuration (sizes and shapes) on the membrane content are addressed. It is shown that the tendency for phase segregation of gel and fluid phase lipid mixtures is accentuated in the presence of divalent calcium ions for membranes containing anionic lipids as compared to neutral bilayers. Annexin A1 adsorbs preferentially and irreversibly on preformed phosphatidylserine (PS) enriched lipid domains but, dependent on the PS content of the bilayer, the protein itself may induce clustering of the anionic lipids into areas with high binding affinity. Corroborated evidence from AFM and fluorescence experiments confirm the hypothesis of a specifically increased hydrolytic activity of PLA2 on the highly curved regions of membranes due to a facilitated access of lipase to the cleavage sites of the lipids. The influence of the nanoscale gold surface topography on the adhesion of lipid vesicles is unambiguously demonstrated and this reveals, at least in part, an answer for the controversial question existent in the literature about the behavior of lipid vesicles interacting with bare gold substrates. The possibility of formation monolayers of lipid vesicles on chemically untreated gold substrates decorated with gold nanorods opens new perspectives for biosensing applications that involve the radiative decay engineering of the plasmonic particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During my Doctoral study I researched about the remote detection of canopy N concentration in forest stands, its potentials and problems, under many overlapping perspectives. The study consisted of three parts. In S. Rossore 2000 dataset analysis, I tested regressions between N concentration and NIR reflectances derived from different sources (field samples, airborne and satellite sensors). The analysis was further expanded using a larger dataset acquired in year 2009 as part of a new campaign funded by the ESA. In both cases, a good correlation was observed between Landsat NIR, using both TM (2009) and ETM+ (2000) imagery, and N concentration measured by a CHN elemental analyzer. Concerning airborne sensors I did not obtain the same good results, mainly because of the large FOV of the two instruments, and to the anisotropy of vegetation reflectance. We also tested the relation between ground based ASD measures and nitrogen concentration, obtaining really good results. Thus, I decided to expand my study to the regional level, focusing only on field and satellite measures. I analyzed a large dataset for the whole of Catalonia, Spain; MODIS imagery was used, in consideration of its spectral characteristics and despite its rather poor spatial resolution. Also in this case a regression between nitrogen concentration and reflectances was found, but not so good as in previous experiences. Moreover, vegetation type was found to play an important role in the observed relationship. We concluded that MODIS is not the most suitable satellite sensor in realities like Italy and Catalonia, which present a patchy and inhomogeneous vegetation cover; so it could be utilized for the parameterization of eco-physiological and biogeochemical models, but not for really local nitrogen estimate. Thus multispectral sensors similar to Landsat Thematic Mapper, with better spatial resolution, could be the most appropriate sensors to estimate N concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.