959 resultados para Chemical structures
Resumo:
We report the synthesis and the structural and magnetic characterization of two new compounds: dibromobis-(pdmp)copper(II), CuBr2C22H24N4 (1), and dichlorobis(pdmp)copper(II), CuCl2C22H24N4 (2), where pdmp = 1-phenyl-3,5-dimethylpyrazole. The structures were refined by full-matrix least-squares techniques to R1 = 0.0620 and 0.0777, respectively. Compound 1 belongs to the space group P21/n with a = 8.165(5) Å, b = 10.432(3) Å, c = 13.385(4) Å, β = 100.12(4)̊, and Z = 2. Compound 2 belongs to the space group P21/c with a = 8.379(2) Å, b = 22.630(2) Å, c = 12.256(2) Å, β= 98.43(3)°, and Z = 4. It has the same molecular formula as a compound reported previously but a different crystal structure. Detailed single-crystal EPR measurements were performed for single-crystal samples of 1 and 2 at 9 and 35 GHz and at room temperature. The positions and line widths of the EPR lines were measured as a function of the magnetic field orientation in three orthogonal planes. The data were used to study the electronic properties of the copper ions and to evaluate the exchange interactions between them. Our results are discussed in terms of the electronic pathways for superexchange between copper ions, which are provided by the stacking of pyrazole and phenyl rings of neighboring molecules and by hydrogen-halogen bonds. © 1999 American Chemical Society.
Resumo:
The fac-[RuCl3(NO)(dppb)] complex I has been prepared from solution of the correspondent mer isomer in refluxing methanol (dppb = 1,4-bis(diphenylphosphino)butane). The mer-[RuCl3(NO)(diop)] (II) has been obtained from the mer-[RuCl3(diop)(H2O)] by bubbling NO for 1 h in dichloromethane (diop = 2S,3S-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane). The complexes have been characterized by microanalysis, cyclic voltammetry (CV), IR and 31P{1H} NMR spectroscopies. The crystal and molecular structures of these two compounds have been determined from X-ray studies. The mer-[RuCl3(NO)(dppb)] isomer III was characterized in solution by NMR spectra (31P{1H}, 1H{31P}, 31P-1H HETCORR, COSY 1H-1H, HMQC 1H-13C and HMBC 1H-13C). © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The new flavonoid glycoside kaempferol-3-O-α-L-rhamnopyranosyl(1→2)-O-[α-L- rhamnopyranosyl(1→6)]-O-β-D-galactopyranoside-7-O-α-L- rhamnopyranoside was isolated together with (S)-zierin from the leaves of Zollernia ilicifolia (Fabaceae), a medicinal plant used as analgesic and antiulcerogenic effects in Brazilian Tropical Atlantic Rain Forest. The structures were established on the basis of 1H, 13C NMR and 2D NMR (COSY, HMBC, HMQC), UV, MS and IV spectra. The infusion of Zollernia ilicifolia was qualitatively compared to the infusion of the espinheiras-santas (Maytenus aquifolium and Maytenus ilicifolia) by HPLC-DAD.
Resumo:
• Background and Aims: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. • Methods: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. • Key Results: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. • Conclusions: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae. © The Author 2006. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.
Resumo:
This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
In this study, the short- and long-range chemical environments of Cu dopant in TiO2 photocatalyst have been investigated. The Cu-doped and undoped TiO2 specimens were prepared by the sol-gel approach employing CuSO4·5H2O and Ti(O-iPr)4 precursors and subjecting the dried gels to thermal treatment at 400 and 500 C. The photocatalytic activity, investigated by methylene blue degradation under sunlight irradiation, showed a significantly higher efficiency of Cu-doped samples than that of pure TiO2. The X-ray diffraction results showed the presence of anatase phase for samples prepared at 400 and 500 C. No crystalline CuSO4 phase was detected below 500 C. It was also found that doping decreases the crystallite size in the (004) and (101) directions. Infrared spectroscopy results indicated that the chemical environment of sulfate changes as a function of thermal treatment, and UV-vis spectra showed that the band gap decreases with thermal treatment and Cu doping, showing the lowest value for the 400 C sample. X-ray absorption fine structure measurements and analysis refinements revealed that even after thermal treatment and photocatalytic assays, the Cu2+ local order is similar to that of CuSO4, containing, however, oxygen vacancies. X-ray photoelectron spectroscopy data, limited to the near surface region of the catalyst, evidenced, besides CuSO4, the presence of Cu1+ and CuO phases, indicating the active role of Cu in the TiO2 lattice. © 2013 Springer Science+Business Media New York.
Resumo:
Single crystalline SnO micro-disks, synthesized by a carbothermal reduction process, exhibited a nearly 1000-fold increase in resistance upon exposure to 100 ppm of NO2 without addition of catalysts or dopants nor the existence of nano-sized dimensions. Moreover, the SnO displayed a greater than 100-fold selectivity to NO2 over potential interferents including CO, H2 and CH4. The high sensor signal and exceptional selectivity for this novel sensor material are attributed to the existence of a high density of active lone pair electrons on the exposed (0 0 1) planes of the single crystalline SnO disks. This, thereby, identifies new means, not utilizing nano-dimensions, to achieve high gas sensitivity. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.
Resumo:
Do extrato hexânico das partes aéreas de Aristolochia peltato-deltoidea Hoehne (Aristolochiaceae) foram isolados duas novas lignanas epiméricas do tipo dibenzilbutirolactol, rel-(8R, 8 S, 9S)-3,4-dimetoxi-3 ,4 -metilenodioxi-9b-etoxi- e rel-(8R, 8 S, 9R)-3,4-dimetoxi-3 ,4 -metilenodioxi-9a-etoxi-lignanas-8.8 ,9.O.9 , além da neolignana benzofurânica eupomatenóide-7, a-tocoferilquinona, b-sitosterol e estigmasterol. Do extrato clorofórmico foram isoladas duas lignanas dibenzilbutirolactonas diasteroisoméricas: rel-(8R, 8 R)- e rel-(8R, 8 S)-3,4-dimetoxi-3 ,4 -metilenodioxi-9-oxo-lignanas-8.8 ,9.O.9 . A composição química das frações apolares do extrato hexânico também foi analisada por CG/EM. Dentre os componentes detectados, dez foram identificados. As estruturas dos compostos isolados foram elucidadas utilizando-se métodos espectrométricos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)