994 resultados para CHLORINE-RESISTANT MEMBRANE
Resumo:
Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.
Resumo:
We collected and analyzed 500 samples of human milk, from five Brazilian cities (100 from each) to detect methicillin-resistant strains of Staphylococcus aureus (MRSA) producing enterotoxins. We found 57 strains of MRSA, and the mecA gene, responsible for resistance, was detected in all of them using a specific molecular probe. We examined 40 strains for the presence of four enterotoxins, after selecting a subset that included all strains from each region, except for the largest sample, from which 10 were randomly selected. Among these two presented enterotoxin B, and growth in human colostrum and trypicase soy broth. After 5 h of incubation at 37°C, population sizes were already higher than 9.4 x 105 UFC/ml and enterotoxin was released into culture medium and colostrum. Our results stress the importance of hygiene, sanitary measures, and appropriate preservation conditions to avoid the proliferation of S. aureus in human milk.
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
Methicillin resistant Staphylococcus aureus (MRSA) is an organism that is frequently transmitted in hospitals and perinatal units. The MRSA is considered a public health problem in neonatology because of its strong potential for dissemination in the wards associated with high rates of morbidity and mortality. In this study we describe the bacteriological, epidemiological and molecular characteristics of MRSA isolated from anterior nares and blood cultures of newborns hospitalized in a public maternity hospital in the city of Rio de Janeiro, Brazil. The frequency of MRSA isolated from nasal swabs of newborns was 47.8% (43/90). The genetic analysis of MRSA strains from anterior nares, showed 8 different pulsed field gel electrophoresis patterns (PFGE). Upon analysis of PFGE patterns of the 12 MRSA strains isolated from blood cultures, 8 different patterns were observed, 9 (75%) strains were genetic related to nasal secretion isolates patterns. In conclusion, our data demonstrate the importance of screening of newborns for the presence of MRSA in Brazilian hospitals and the usefulness of genetic typing of these pathogen during epidemiologic studies. This should lead to a better knowledge on the significancy and spreading of MRSA in the hospitals.
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Katholieke Universiteit Leuven, Belgium, entre 2007 i 2009. Aquest projecte descriu la síntesi i aplicació de nous tipus de membranes compòsit basades en xarxes metal•loorgàniques (MOFs). Aquestes es van seleccionar tenint en compte les seves propietats estructurals per tal de discriminar les espècies a separar en funció de la seva mida molecular. Les membranes obtingudes s'han aplicat satisfactòriament tant en separacions líquides, concretament en nanofiltració resistent a dissolvents (SRNF), i en separació de parells de gasos com CO2/CH4, CO2/N2 i H2/CO2. Els resultats obtinguts posen de manifest l'obtenció de membranes sense defectes i amb rendiments prometedors, en la majoria dels casos, amb permeabilitats i selectivitats superiors a membranes purament polimèriques. Tanmateix s'ha desenvolupat un nou equipament d'alt rendiment (HT) per a separacions de gasos que inclou un mòdul que permet realitzar 16 experiments simultàniament. Els resultats obtinguts amb el nou equip són comparables amb els obtinguts amb mòduls convencionals, i alhora presenten una millor reproduïbilitat. Finalment, s'ha establert un nou mètode per a obtenir membranes per a SRNF, que han estat aplicades en processos de separació de catalitzadors homogenis en dissolvents polars apròtics i s'han caracteritzat emprant la tècnica d'espectroscòpia d'annihilació de positrons, que ha permès establir per primer cop una relació entre les propietats estructurals de les membranes a nivell molecular i el seu rendiment en les aplicacions anteriors.
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
In extreme situations, such as hyperacute rejection of heart transplant or major heart trauma, heart preservation may not be possible. Our experimental team works on a project of peripheral extracorporeal membrane oxygenation (ECMO) support in acardia as a bridge to heart transplantation or artificial heart implantation. An ECMO support was established in five calves (58.6 ± 6.9 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with carotid artery return. After baseline measurements, ventricular fibrillation was induced, great arteries were clamped, heart was excised, and right and left atria remnants, containing pulmonary veins, were sutured together leaving an atrial septal defect over the caval axis cannula. Measurements of pump flow and arterial pressure were taken with the pulmonary artery clamped and anastomosed with the caval axis for a total of 6 hours. Pulmonary artery anastomosis to the caval axis provided an acceptable 6 hour hemodynamic stability, permitting a peripheral access ECMO support in extreme scenarios indicating a heart explantation.
Resumo:
We evaluated the mutations in a 193bp of the rpoB gene by automated sequencing of rifampicin (RMP)-resistant and susceptible Mycobacterium tuberculosis strains isolated from Brazil (25 strains) and France (37 strains). In RMP-resistant strains, mutations were identified in 100% (16/16) from France and 89% (16/18) from Brazil. No mutation was detected in the 28 RMP-susceptible strains. Among RMP-resistant or RMP-susceptible strains deletion was observed. A double point mutation which had not been reported before was detected in one strain from France. Among French resistant strains mutations were found in codons 531 (31.2%), 526, 513 and 533 (18.7% each). In Brazilian strains the most common mutations were in codons 531 (72.2%), 526 (11.1%) and 513 (5.5%). The heterogeneity found in French strains may be related to the fact that most of those strains were from African or Asian patients.
Resumo:
Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.
Resumo:
O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
Calcium signalling is fundamental for muscular contractility of Schistosoma mansoni. We have previously described the presence of transport ATPases (Na+,K+-ATPase and (Ca2+-Mg2+)-ATPase) and calcium channels (ryanodine receptors - RyR) involved in control of calcium homeostasis in this worm. Here we briefly review the main technics (ATPase activity, binding with specific radioligands, fluxes of 45Ca2+ and whole worm contractions) and results obtained in order to compare the distribution patterns of these proteins: thapsigargin-sensitive (Ca2+-Mg2+)-ATPase activity and RyR co-purified in P1 and P4 fractions mainly, which is compatible with a sarcoplasmic reticulum localization, while basal ATPase (along with Na+,K+-ATPase) and thapsigargin-resistant (Ca2+-Mg2+)-ATPase have a distinct distribution, indicative of their plasma membrane localization. Finally we attempt to integrate these contributions with data from other groups in order to propose the first synoptic model for control of calcium homeostasis in S. mansoni.
Resumo:
Y-688 is a new fluoroquinolone with increased activity against ciprofloxacin-resistant staphylococci. The MICs of Y-688 and other quinolones were determined for 58 isolates of ciprofloxacin-resistant and methicillin-resistant Staphylococcus aureus (MRSA). The MICs at which 50% and 90% of bacteria were inhibited were >/=128 and >/=128 mg/liter, respectively, for ciprofloxacin, 16 and 32 mg/liter, respectively, for sparfloxacin, and 0.25 and 1 mg/liter, respectively, for Y-688. This new quinolone was further tested in rats with experimental endocarditis due to either of two isolates of ciprofloxacin-resistant MRSA (namely, P8/128 and CR1). Infected animals were treated for 3 days with ciprofloxacin, vancomycin, or Y-688. Antibiotics were administered through a computerized pump to simulate human-like pharmacokinetics in the serum of rats. The anticipated peak and trough levels of Y-688 were 4 and 1 mg/liter at 0.5 and 12 h, respectively. Treatment with ciprofloxacin was ineffective. Vancomycin significantly decreased vegetation bacterial counts for both organisms (P less, similar 0.05). In contrast, Y-688 only marginally decreased vegetation bacterial counts (P greater, similar 0.05). Moreover, several vegetation that failed Y-688 treatment grew staphylococci for which the MICs of the test antibiotic were increased two to eight times. Y-688 also selected for resistance in vitro, and isolates for which the MICs were increased eight times emerged at a frequency of ca. 10(-8). Thus, in spite of its low MIC for ciprofloxacin-resistant MRSA, Y-688 failed in vivo and its use carried the risk of resistance selection. The fact that ciprofloxacin-resistant staphylococci became rapidly resistant to this potent new drug suggests that the treatment of ciprofloxacin-resistant MRSA with new quinolones might be more problematic than expected.