993 resultados para CH4 fluxes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixingratios have been operated since the mid-2000’s in Siberia. For the first time in a single work, we assimilate 1 year of these in situ observations in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the mesoscale in the Siberian lowlands for the year 2010. To do so, we first inquire about the way the inversion uses the observations and the way the fluxes are constrained by the observation sites. As atmospheric inver- sions at the mesoscale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversion systems. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution quasi-continuous signal is representative of very local emission patterns difficult to analyse with a mesoscale system. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites than the ones currently in operation are then necessary to constrain the whole Siberian lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. Finally, the tolerance intervals for posterior methane fluxes are of roughly 20 % (resp. 50 %) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70 % of Siberian lowlands emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian lowlands, we find a regional methane budget of 5–28 TgCH4 for the year 2010, i.e. 1–5 % of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are tentatively used for the evaluation of the inversion results, but they exhibit only a marginal signal from the fluxes within the region of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Prior methane emissions were specified for five sources: biosphere, anthropogenic, fire, termites and ocean, of which bio-sphere and anthropogenic emissions were optimized. Atmospheric CH 4 mole fractions for 2007 from northern Finland calculated from prior and optimized emissions were compared with observations. It was found that the root mean squared errors of the posterior esti - mates were more than halved. Furthermore, inclusion of NOAA observations of CH 4 from weekly discrete air samples collected at Pallas improved agreement between posterior CH 4 mole fraction estimates and continuous observations, and resulted in reducing optimized biosphere emissions and their uncertainties in northern Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a reliable simulation of the time and space dependent CO2 redistribution between ocean and atmosphere an appropriate time dependent simulation of particle dynamics processes is essential but has not been carried out so far. The major difficulties were the lack of suitable modules for particle dynamics and early diagenesis (in order to close the carbon and nutrient budget) in ocean general circulation models, and the lack of an understanding of biogeochemical processes, such as the partial dissolution of calcareous particles in oversaturated water. The main target of ORFOIS was to fill in this gap in our knowledge and prediction capability infrastructure. This goal has been achieved step by step. At first comprehensive data bases (already existing data) of observations of relevance for the three major types of biogenic particles, organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica (BSi or opal), as well as for refractory particles of terrestrial origin were collated and made publicly available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amounts of aerosols transported to the shelf surface were calculated on the basis of in situ measurements of concentrations of eolian matter (insoluble aerosol fraction) and vertical fluxes of settling dust in five areas of the Black Sea shelf from the Danube delta to the Inguri River mouth. More than 8.3 mln t of eolian matter are annually transported from the land over the shelf of the former USSR. At the same time more than 5.4 mln t are supplied to the northwestern shelf area, 1.7 mln t are supplied to the Crimean area, about 0.8 mln t are supplied to the Kerch-Taman' area, and about 0.45 mln t are supplied to the Caucasian area.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past water column stratification can be assessed through comparison of the d18O of different planktonic foraminiferal species. The underlying assumption is that different species form their shells simultaneously, but at different depths in the water column. We evaluate this assumption using a sediment trap time-series of Neogloboquadrina pachyderma (s) and Globigerina bulloides from the NW North Atlantic. We determined fluxes, d18O and d13C of shells from two size fractions to assess size-related effects on shell chemistry and to better constrain the underlying causes of isotopic differences between foraminifera in deep-sea sediments. Our data indicate that in the subpolar North Atlantic differences in the seasonality of the shell flux, and not in depth habitat or test size, determine the interspecies Delta d18O. N. pachyderma (s) preferentially forms from early spring to late summer, whereas the flux ofG. bulloides peaks later in the season and is sustained until autumn. Likewise, seasonality influences large and small specimens differently, with large shells settling earlier in the season. The similarity of the seasonal d18O patterns between the two species indicates that they calcify in an overlapping depth zone close to the surface. However, their d13C patterns are markedly different (>1 per mil). Both species have a seasonally variable offset from d13CDIC that appears to be governed primarily by temperature, with larger offsets associated with higher temperatures. The variable offset from d13CDIC implies that seasonality of the flux affects the fossil d13C signal, which has implications for reconstruction of the past oceanic carbon cycle.