975 resultados para CELL MORPHOLOGY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ticks are classified into three families: Argasidae, Ixodidae, and Nutalliellidae. The taxonomy and phylogeny within Ixodidae are still discussed by the specialists, thus requiring further studies. Amblyomma cajennese and Amblyomma aureolatum (Brazil) belong to two species complexes known as “cajennese” and “ovale”, respectively, and are directly related to the transmission of the Brazilian spotted fever. This confirms the medical and veterinary significance of these species, as well as the need for further morphological studies that will bring a better understanding of their taxonomy, phylogeny, and control. In this context, the present study aimed to characterize the morphology of the male reproductive system of A. cajennese and A. aureolatum when unfed and after 4 days of feeding, thereby seeking to: (a) distinguish the two species or “complexes”, and (b) study an internal system which has the potential to be targeted by acaricides. Therefore, males from both species (unfed and after 4 days of feeding) were cold-anesthetized, dissected, and had their reproductive systems removed for histological analysis. The results showed that the morphology of the male reproductive system is generally similar between both species, like in other Ixodidae ticks, exhibiting a multilobed accessory gland complex related to seminal fluid secretion, a pair of vasa deferentia and a pair of testes housing germ cells (spermatocytes) in different stages. The main differences were found in the development of the accessory gland complex cells and germ cells, showing that the maturation of the male reproductive system starts later in A. aureolatum, when compared to A. cajennese. However, during the blood meal, A. aureolatum development is increased, thus making germ cell maturation and gland complex activity higher than in A. cajennese. This study shows the differences in the development of the male reproductive systems of both species, while providing information that can assist in the establishment of new control methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A differentiation towards myoepithelial cells has been demonstrated in several types of lesions in the breast. These include multifocal myoepitheliomatosis, the rare mixed tumor or pleomorphic adenoma, adenoid cystic carcinoma, adenomyoepithelioma and myoepithelial carcinoma (malignant myoepithelioma). Myoepithelial carcinoma is the only lesion purely composed of myoepithelial cells. All these tumors are benign and/or of low-grade malignancy, with the exception of malignant myoepithelioma. In contrast to the statement of the current World Health Organization (WHO), recent studies have reported that regional and distant metastases may occur in about 50% of pure myoepithelial carcinomas. The presented case of a breast carcinoma with dominant myoepithelial/spindle cell differentiation in a 58-year-old woman is an excellent example to document the highly aggressive biological behavior of this tumor phenotype. Despite an extensive chemotherapy and radiotherapy, the tumor was rapidly progressive, forming a finally exulcerating local tumor relapse and widespread metastases to the myocardium, lungs, liver, kidneys and skin. Similarities in morphology and biological behavior compared to patients with "triple-negative" (hormone receptor and Her2) monophasic sarcomatoid carcinomas and pure spindle cell sarcomas are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of a severe nutrient restriction on mammary tissue morphology and remodeling, mammary epithelial cell (MEC) turnover and activity, and hormonal status in lactating dairy cows. We used 16 Holstein x Normande crossbred dairy cows, divided into 2 groups submitted to different feeding levels (basal and restricted) from 2 wk before calving to wk 11 postpartum. Restricted-diet cows had lower 11-wk average daily milk yield from calving to slaughter than did basal-diet cows (20.5 vs. 33.5 kg/d). Feed restriction decreased milk fat, protein, and lactose yields. Restriction also led to lower plasma insulin-like growth factor 1 and higher growth hormone concentrations. Restricted-diet cows had lighter mammary glands than did basal-diet cows. The total amount of DNA in the mammary gland and the size of the mammary acini were smaller in the restricted-diet group. Feed restriction had no significant effect on MEC proliferation at the time of slaughter but led to a higher level of apoptosis in the mammary gland. Gelatin zymography highlighted remodeling of the mammary extracellular matrix in restricted-diet cows. Udders from restricted-diet cows showed lower transcript expression of alpha-lactalbumin and kappa-casein. In conclusion, nutrient restriction resulted in lower milk yield in lactating dairy cows, partly due to modulation of MEC activity and a lower number of mammary cells. An association was found between feed restriction-induced changes in the growth hormone-insulin-like growth factor-1 axis and mammary epithelial cell dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the hypothesis was tested that the size of gastrointestinal tract (GIT) mucosal components and rates of epithelial cell proliferation and apoptosis change with increasing age. The aims were to quantitatively examine GIT histomorphology and to determine mucosal epithelial cell proliferation and apoptosis rates in neonatal (<48 h old) and adult (8 to 11.5 yr old) dogs. Morphometrical analyses were performed by light microscopy with a video-based, computer-linked system. Cell proliferation and apoptosis of the GIT epithelium were evaluated by counting the number of Ki-67 and caspase-3-positive cells, respectively, using immunohistochemical methods. Thickness of mucosal, glandular, subglandular, submucosal and muscular layers, crypt depths, villus heights, and villus widths were consistently greater (P < 0.05 to P < 0.001), whereas villus height/crypt depth ratios were smaller (P < 0.001) in adult than in neonatal dogs. The number of Ki-67-positive cells in stomach, small intestine, and colon crypts, but not in villi, was consistently greater (P < 0.01) in neonatal than in adult dogs. In contrast, the number of caspase-3-positive cells in crypts of the stomach, small intestine, and colon and in villi was not significantly influenced by age. In conclusion, canine GIT mucosal morphology and epithelial cell proliferation rates, but not apoptosis rates, change markedly from birth until adulthood is reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable nanoparticles are at the forefront of drug delivery research as they provide numerous advantages over traditional drug delivery methods. An important factor affecting the ability of nanoparticles to circulate within the blood stream and interact with cells is their morphology. In this study a novel processing method, confined impinging jet mixing, was used to form poly (lactic acid) nanoparticles through a solvent-diffusion process with Pluronic F-127 being used as a stabilizing agent. This study focused on the effects of Reynolds number (flow rate), surfactant presence in mixing, and polymer concentration on the morphology of poly (lactic acid) nanoparticles. In addition to looking at the parameters affecting poly (lactic acid) morphology, this study attempted to improve nanoparticle isolation and purification methods to increase nanoparticle yield and ensure specific morphologies were not being excluded during isolation and purification. The isolation and purification methods used in this study were centrifugation and a stir cell. This study successfully produced particles having pyramidal and cubic morphologies. Despite successful production of these morphologies the yield of non-spherical particles was very low, additionally great variability existed between redundant trails. Surfactant was determined to be very important for the stabilization of nanoparticles in solution but appears to be unnecessary for the formation of nanoparticles. Isolation and purification methods that produce a high yield of surfactant free particles have still not been perfected and additional testing will be necessary for improvement.¿

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live attenuated Salmonella are attractive vaccine candidates for mucosal application because they induce both mucosal immune responses and systematic immune responses. After breaking the epithelium barrier, Salmonella typhimurium is found within dendritic cells (DC) in the Peyer's patches. Although there are abundant data on the interaction of S. typhimurium with murine epithelial cells, macrophages and DC, little is known about its interaction with human DC. Live attenuated S. typhimurium have recently been shown to efficiently infect human DC in vitro and induce production of cytokines. In this study, we have analysed the morphological consequences of infection of human DC by the attenuated S. typhimurium mutant strains designated PhoPc, AroA and SipB and the wild-type strains of the American Type Culture Collection (Manassas, VA, USA), ATCC 14028 and ATCC C53, by electron microscopy at 30 min, 3 h and 24 h after exposure. Our results show that genetic background of the strains profoundly influence DC morphology following infection. The changes included (i) membrane ruffling; (ii) formation of tight or spacious phagosomes; (iii) apoptosis; and (iv) spherical, pedunculated membrane-bound microvesicles that project from the plasma membrane. Despite the fact that membrane ruffling was much more pronounced with the two virulent strains, all mutants were taken up by the DC. The microvesicles were induced by all the attenuated strains, including SipB, which did not induce apoptosis in the host cell. These results suggest that Salmonella is internalized by human DC, inducing morphological changes in the DC that could explain immunogenicity of the attenuated strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations.