954 resultados para Bochner tensor
Resumo:
EPR study of the vanadyl ion has been carried out in its paramagnetically dilute form in K2Zn(SO4)2·6H2O and K2Mg(SO4)2·6H2O at room temperature at X-band. The vanadyl ion enters the divalent metal site and preferentially orients itself in the direction of the water molecules forming the octahedron and forms the vanadyl sulfate pentahydrate complex. The g and A tensorscorresponding to the two populous V-O orientations have been analyzed to obtain the principal values and their direction cosines with respect to the crystallographics axes. It is found that the g and A tensor have the same principal frames of reference within the limits of eperimental error. A correlation between the metal-water distance and the populations of the different V-O orientations is observed.
Resumo:
Li n.m.r, in single crystals of lithium acetate dihydrate is used to determine the quadrupole coupling parameters: (e2qQ/h) and r/. The orientations of the principal z, y and x components of the electric field gradient tensor are determined to be along the crystallographic b, a and c axes respectively. The parameters experimentally determined are (e2qQ/h)= 154"6 kHz; and i/= 0.9. This study indicates a tetrahedral configuration around the Li ion, confirming the recent X-ray and p.m.r, results.
Resumo:
The improvement terms in the generalised energy-momentum tensor of Callan, Coleman and Jackiw can be derived from a variational principle if the Lagrangian is generalised to describe coupling between ‘matter’ fields and a spin-2 boson field. The required Lorentz-invariant theory is a linearised version of Kibble-Sciama theory with an additional (generally-covariant) coupling term in the Lagrangian. The improved energy-momentum tensor appears as the source of the spin-2 field, if terms of second order in the coupling constant are neglected.
Resumo:
A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.
Resumo:
Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.
Resumo:
We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wave numbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E 69, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between "non-cascade-type" and "cascade-type" behavior is shown numerically for a specific set of initial energy spectra.
Resumo:
A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.
Resumo:
ESR investigations on dilute single crystals of dibarium copper formate tetrahydrate, at room temperature and 90° K. have been described. A general method used for the evaluation of theg-tensor in this triclinic crystal, which contains only one ion in the unit cell, has been discussed. A detailed account of the evaluation of the quadrupole interaction is given. Expressions for the positions of the hyperfine levels of the lowest Kramer’s doublet of the Cu++ ion in the magnetic field have been worked out for the case when B and Q are of similar magnitude.
Resumo:
We derive the heat kernel for arbitrary tensor fields on S-3 and (Euclidean) AdS(3) using a group theoretic approach. We use these results to also obtain the heat kernel on certain quotients of these spaces. In particular, we give a simple, explicit expression for the one loop determinant for a field of arbitrary spin s in thermal AdS(3). We apply this to the calculation of the one loop partition function of N = 1 supergravity on AdS(3). We find that the answer factorizes into left- and right-moving super Virasoro characters built on the SL(2, C) invariant vacuum, as argued by Maloney and Witten on general grounds.
Resumo:
Starting from beam and target spin systems which are polarized in the usual way by applying external magnetic fields, measurements of appropriate final state tensor parameters, viz., {t0,1k, k=1,...,2j} of particle d with spin j in a reaction a+b→d+c1+c2+. . .are suggested to determine the reaction amplitudes in spin space free from any associated discrete ambiguity.
Resumo:
The superfluid state of fermion-antifermion fields developed in our previous papers is generalized to include higher orbital and spin states. In addition to single-particle excitations, the system is capable of having real and virtual bound or quasibound composite excitations which are akin to bosons of spinJ P equal to0 �, 1�, 2+, etc. These pseudoscalar, vector, and tensor bosons can be massive or massless and provide the vehicles for strong, electromagnetic, weak, and gravitational interactions. The concept that the basic (unmanifest) fermion-antifermion interaction can lead to a multiplicity of manifest interactions seems to provide a basis for a unified field theory.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.
Resumo:
In computational mechanics, finite rotations are often represented by rotation vectors. Rotation vector increments corresponding to different tangent: spaces are generally related by a linear operator, known as the tangential transformation T. In this note, we derive the higher order terms that are usually left out in linear relation. The exact nonlinear relation is also presented. Errors via the linearized T are numerically estimated. While the concept of T arises out of the nonlinear characteristics of the rotation manifold, it has been derived via tensor analysis in the context of computational mechanics (Cardona and Geradin, 1988). We investigate the operator T from a Lie group perspective, which provides a better insight and a 1-1 correspondence between approaches based on tensor analysis and the standard matrix Lie group theory. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study the dynamical properties of the homogeneous shear flow of inelastic dumbbells in two dimensions as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are modelled as smooth fused disks characterized by the ratio of the distance between centres (L) and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in our simulations. Area fractions studied are in the range 0.1-0.7, while coefficients of normal restitution (e(n)) from 0.99 to 0.7 are considered. The simulations use a modified form of the event-driven methodology for circular disks. The average orientation is characterized by an order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same direction). We investigate power-law fits of S as a function of (L D) and (1 - e(n)(2)) There is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased. The order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. The mean energy of the velocity fluctuations in the flow direction is higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocities are Gaussian to a very good approximation. The pressure is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation, even at the lowest area fractions studied here. The mean angular velocity of the particles is equal to half the vorticity at low area fractions, but the magnitude systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper