950 resultados para BINARY-MIXTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Important diffusion parameters, such as-parabolic growth constant, integrated diffusivity, ratio of intrinsic diffusivities of species Ni and Sn, Kirkendall marker velocity and the activation energy for diffusion kinetics of binary Ni3Sn4 phase have been investigated with the help of incremental diffusion couple technique (Sn/Ni0.57Sn0.43) in the temperature range 200-150 degrees C. Low activation energy extracted from Arrhenius plot indicates grain boundary controlled diffusion process. The species Sn is three times faster than Ni at 200 degrees C. Further, the activation energy of Sn tracer diffusivity is greater than that of Ni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis is carried out to observe the influence of important flow parameters such as Nusselt number and Sherwood number on the tip speed of an equiaxed dendrite growing in a convecting alloy melt. The effect of thermal and solutal transfer at the interface due to convection is equated to an undercooling of the melt, and an expression is derived for this equivalent undercooling in terms of the flow Nusselt number and Sherwood number. Results for the equivalent undercooling are compared with corresponding numerical values obtained by performing simulations based on the enthalpy method. This method represents a relatively simple procedure to analyze the effects of melt convection on the growth rate of dendrites. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solid-state electrochemical technique, thermodynamic properties of three sulfide phases (RhS0.882, Rh3S4, Rh2S3) in the binary system (Rh + S) are measured as a function of temperature over the range from (925 to 1275) K. Single crystal CaF2 is used as the electrolyte. The auxiliary electrode consisting of (CaS + CaF2) is designed in such a way that the sulfur chemical potential converts into an equivalent fluorine potential at each electrode. The sulfur potentials at the measuring electrodes are established by the mixtures of (Rh + RhS0.882), (RhS0.882 + Rh3S4) and (Rh3S4 + Rh2S3) respectively. A gas mixture (H-2 + H2S + Ar) of known composition fixes the sulfur potential at the reference electrode. A novel cell design with physical separation of rhodium sulfides in the measuring electrode from CaS in the auxiliary electrode is used to prevent interaction between the two sulfide phases. They equilibrate only via the gas phase in a hermetically sealed reference enclosure. Standard Gibbs energy changes for the following reactions are calculated from the electromotive force of three cells: 2.2667Rh (s) + S-2 (g) -> 2.2667RhS(0.882) (s), Delta(r)G degrees +/- 2330/(J . mol(-1)) = -288690 + 146.18 (T/K), 4.44RhS(0.882) (s) + S-2 (g) -> 1.48Rh(3)S(4) (s), Delta(r)G degrees +/- 2245/(J . mol(-1)) = -245596 + 164.31 (T/K), 4Rh(3)S(4) (s) + S-2 (g) -> 6Rh(2)S(3) (s), Delta(r)G degrees +/- 2490/(J . mol(-1)) = -230957 + 160: 03 (T/K). Standard entropy and enthalpy of formation of rhodium sulfides from elements in their normal standard states at T = 298.15 K are evaluated. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the third Goldstone mode, which emerges in binary condensates at phase separation, persists to higher interspecies interaction for density profiles where one component is surrounded on both sides by the other component. This is not the case with symmetry-broken density profiles where one species is entirely to the left and the other is entirely to the right. We, then, use Hartree-Fock-Bogoliubov theory with Popov approximation to examine the mode evolution at T not equal 0 and demonstrate the existence of mode bifurcation near the critical temperature. The Kohn mode, however, exhibits deviation from the natural frequency at finite temperatures after the phase separation. This is due to the exclusion of the noncondensate atoms in the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vortex reconnections plays an important role in the turbulent flows associated with the superfluids. To understand the dynamics, we examine the reconnections of vortex rings in the superfluids of dilute atomic gases confined in trapping potentials using Gross-Petaevskii equation. Further more we study the reconnection dynamics of coreless vortex rings, where one of the species can act as a tracer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present detailed results from a molecular dynamics (MD) simulation of phase-separation kinetics in polymer mixtures. Our MD simulations naturally incorporate hydrodynamic effects. We find that polymeric phase separation (with dynamically symmetric components) is in the same universality class as segregation of simple fluids: the degree of polymerization only slows down the segregation kinetics. For d = 2 polymeric fluids, the domain growth law is L(t) similar to t(phi) with phi showing a crossover from 1/3 -> 1/2 -> 2/3. For d = 3 polymeric fluids, we see the crossover phi = 1/3 -> 1. Our MD simulations do not yet access the inertial hydrodynamic regime (with L similar to t(2/3)) of phase separation in 3-d fluids. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the single crystal growth of antimony doped Fe1+yTe and Fe1+yTe0.5Se0.5 (Fe1+ySbxTe1-x (x=0, 2%, 5%) and Fe1+yTe0.49Se0.49Sb0.02) by a modified horizontal Bridgman method. Growth parameters are optimized to obtain high quality single crystals. The antiferromagnetic (AFM) transition at T-N = 62.2 K which is a first order transition, shifts to lower temperature on doping in Fe1+yTe. Alternately when the chalcogen site of the ternary compound Fe1+yTe0.5Se0.5 is doped with Sb, superconductivity is preserved albeit the superconducting transition temperature (T-C) falls slightly and a concomitant reduction occurs in superconducting volume fraction. (C) 2013 Elsevier B.V. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane and ethane are the simplest hydrocarbon molecules that can form clathrate hydrates. Previous studies have reported methods for calculating the three-phase equilibrium using Monte Carlo simulation methods in systems with a single component in the gas phase. Here we extend those methods to a binary gas mixture of methane and ethane. Methane-ethane system is an interesting one in that the pure components form sII clathrate hydrate whereas a binary mixture of the two can form the sII clathrate. The phase equilibria computed from Monte Carlo simulations show a good agreement with experimental data and are also able to predict the sI-sII structural transition in the clathrate hydrate. This is attributed to the quality of the TIP4P/Ice and TRaPPE models used in the simulations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Onsager model for the secondary flow field in a high-speed rotating cylinder is extended to incorporate the difference in mass of the two species in a binary gas mixture. The base flow is an isothermal solid-body rotation in which there is a balance between the radial pressure gradient and the centrifugal force density for each species. Explicit expressions for the radial variation of the pressure, mass/mole fractions, and from these the radial variation of the viscosity, thermal conductivity and diffusion coefficient, are derived, and these are used in the computation of the secondary flow. For the secondary flow, the mass, momentum and energy equations in axisymmetric coordinates are expanded in an asymptotic series in a parameter epsilon = (Delta m/m(av)), where Delta m is the difference in the molecular masses of the two species, and the average molecular mass m(av) is defined as m(av) = (rho(w1)m(1) + rho(w2)m(2))/rho(w), where rho(w1) and rho(w2) are the mass densities of the two species at the wall, and rho(w) = rho(w1) + rho(w2). The equation for the master potential and the boundary conditions are derived correct to O(epsilon(2)). The leading-order equation for the master potential contains a self-adjoint sixth-order operator in the radial direction, which is different from the generalized Onsager model (Pradhan & Kumaran, J. Fluid Mech., vol. 686, 2011, pp. 109-159), since the species mass difference is included in the computation of the density, viscosity and thermal conductivity in the base state. This is solved, subject to boundary conditions, to obtain the leading approximation for the secondary flow, followed by a solution of the diffusion equation for the leading correction to the species mole fractions. The O(epsilon) and O(epsilon(2)) equations contain inhomogeneous terms that depend on the lower-order solutions, and these are solved in a hierarchical manner to obtain the O(epsilon) and O(epsilon(2)) corrections to the master potential. A similar hierarchical procedure is used for the Carrier-Maslen model for the end-cap secondary flow. The results of the Onsager hierarchy, up to O(epsilon(2)), are compared with the results of direct simulation Monte Carlo simulations for a binary hard-sphere gas mixture for secondary flow due to a wall temperature gradient, inflow/outflow of gas along the axis, as well as mass and momentum sources in the flow. There is excellent agreement between the solutions for the secondary flow correct to O(epsilon(2)) and the simulations, to within 15 %, even at a Reynolds number as low as 100, and length/diameter ratio as low as 2, for a low stratification parameter A of 0.707, and when the secondary flow velocity is as high as 0.2 times the maximum base flow velocity, and the ratio 2 Delta m/(m(1) + m(2)) is as high as 0.5. Here, the Reynolds number Re = rho(w)Omega R-2/mu, the stratification parameter A = root m Omega R-2(2)/(2k(B)T), R and Omega are the cylinder radius and angular velocity, m is the molecular mass, rho(w) is the wall density, mu is the viscosity and T is the temperature. The leading-order solutions do capture the qualitative trends, but are not in quantitative agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.