987 resultados para Automatic Vehicle Identification
Resumo:
OBJECTIVE: To evaluate the microbiological quality of pasteurized milk commercialized in Rio de Janeiro, Brazil, and determine serologically enteropathogenic Escherichia coli (EPEC) strains in E. coli isolates obtained from milk samples. METHODS: Ninety samples of pasteurized milk -- types B and C -- of three different commercial brands, purchased in supermarkets and bakeries in Rio de Janeiro, were examined. The amount of total and fecal coliform bacteria was estimated using the Most Probable Number technique. Mesophilic, psychrotrophic, and thermoduric microorganism counts were determined by the Standard Plate Count technique. Isolation and identification of E. coli were carried out using conventional physiological tests. Commercial antisera were used for serological characterization of EPEC. RESULTS: The three milk brands analyzed revealed bacterial counts above the regulated values of the Brazilian government. It was found that among 208 strains of E. coli isolated, 46 (22.1%) were serologically classified as EPEC. The most common EPEC serogroup was O55 (15.2%). CONCLUSIONS: Though recent studies on virulence factors indicate that not all strains serologically classified as EPEC are able to attaching/effacing lesion, it is believed that the isolation of EPEC serogroups from pasteurized milk represent a potential risk for children, as well as an indicative of the presence of other enteropathogens.
Resumo:
The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.
Resumo:
A doença de Machado-Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3), conhecida por ser a mais comum das ataxias hereditárias dominantes em todo o mundo, é uma doença neurodegenerativa autossómica dominante que leva a uma grande incapacidade motora, embora sem alterar o intelecto, culminando com a morte do doente. Atualmente não existe nenhum tratamento eficaz para esta doença. A DMJ é resultado de uma alteração genética causada pela expansão de uma sequência poliglutamínica (poliQ), na região C-terminal do gene que codifica a proteína ataxina-3 (ATXN3). Os mecanismos celulares das doenças de poliglutaminas que provocam toxicidade, bem como a função da ATXN3, não são ainda totalmente conhecidos. Neste trabalho, usamos, pela sua simplicidade e potencial genético, um pequeno animal invertebrado, o nemátode C. elegans, com o objetivo de identificar fármacos eficazes para o combate contra a patogénese da DMJ, analisando simultaneamente o seu efeito na agregação da ATXN3 mutante nas células neuronais in vivo e o seu impacto no comportamento motor dos animais. Este pequeno invertebrado proporciona grandes vantagens no estudo dos efeitos tóxicos de proteínas poliQ nos neurónios, uma vez que a transparência das suas 959 células (das quais 302 são neurónios) facilita a deteção de proteínas fluorescentes in vivo. Para além disso, esta espécie tem um ciclo de vida curto, é económica e de fácil manutenção. Neste trabalho testámos no nosso modelo transgénico da DMJ com 130Qs em C.elegans dois compostos potencialmente moduladores da agregação da ATXN3 mutante e da resultante disfunção neurológica, atuando pela via da autofagia. De modo a validar a possível importância terapêutica da ativação da autofagia os compostos candidatos escolhidos foram o Litío e o análogo da Rapamicina CCI-779, testados independentemente e em combinação. A neuroproteção conferida pelo Litío e pelo CCI-779 independentemente sugere que o uso destes fármacos possa ser considerado uma boa estratégia como terapia para a DMJ, a testar em organismos evolutivamente mais próximos do humano. A manipulação da autofagia, segundo vários autores, parece ser benéfica e pode ser a chave para o desenvolvimento de novos tratamentos para várias doenças relacionadas com a agregação proteica e o envelhecimento.
Resumo:
Relatório de Estágio apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Assessoria de Administração Orientadora: Doutora Isabel Ardions
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.
Resumo:
Personal memories composed of digital pictures are very popular at the moment. To retrieve these media items annotation is required. During the last years, several approaches have been proposed in order to overcome the image annotation problem. This paper presents our proposals to address this problem. Automatic and semi-automatic learning methods for semantic concepts are presented. The automatic method is based on semantic concepts estimated using visual content, context metadata and audio information. The semi-automatic method is based on results provided by a computer game. The paper describes our proposals and presents their evaluations.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.
Resumo:
In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user mobility, it was also created a mobile application to assist the EV driver on these processes. This proposed Smart ElectricVehicle Charging System uses Vehicle-to-Grid (V2G) technology, in order to connect Electric Vehicles and also renewable energy sources to Smart Grids (SG). This system also explores the new paradigm of Electrical Markets (EM), with deregulation of electricity production and use, in order to obtain the best conditions for commercializing electrical energy.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
This paper presents a simulator for electric vehicles in the context of smart grids and distribution networks. It aims to support network operator´s planning and operations but can be used by other entities for related studies. The paper describes the parameters supported by the current version of the Electric Vehicle Scenario Simulator (EVeSSi) tool and its current algorithm. EVeSSi enables the definition of electric vehicles scenarios on distribution networks using a built-in movement engine. The scenarios created with EVeSSi can be used by external tools (e.g., power flow) for specific analysis, for instance grid impacts. Two scenarios are briefly presented for illustration of the simulator capabilities.
Resumo:
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.