826 resultados para Astronomía.
Resumo:
We are undertaking a search for high-redshift low-luminosity Lyman Alpha sources in the SHARDS (Survey for High-z Absorption Red and Dead Sources) survey. Among the pre-selected Lyman Alpha sources two candidates were spotted, located 3.19 arcsec apart, and tentatively at the same redshift. Here, we report on the spectroscopic confirmation with Gran Telescopio Canarias of the Lyman Alpha emission from this pair of galaxies at a confirmed spectroscopic redshifts of z=5.07. Furthermore, one of the sources is interacting/merging with another close companion that looks distorted. Based on the analysis of the spectroscopy and additional photometric data, we infer that most of the stellar mass of these objects was assembled in a burst of star formation 100 Myr ago. A more recent burst (2 Myr old) is necessary to account for the measured Lyman Alpha flux. We claim that these two galaxies are good examples of Lyman Alpha sources undergoing episodic star formation. Besides, these sources very likely constitute a group of interacting Lyman Alpha emitters (LAEs).
Resumo:
We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [L_X(2–10 keV) > 10^42 erg s^− 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; L_IR > 10^11 L_⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log M_DMH/(M_⊙ h^−1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log M_DMH/(M_⊙ h^−1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.
Resumo:
Chandra data in the COSMOS, AEGIS-XD and 4 Ms Chandra Deep Field South are combined with multiwavelength photometry available in those fields to determine the rest-frame U − V versus V − J colours of X-ray AGN hosts in the redshift intervals 0.1 < z < 0.6 (mean z¯=0.40) and 0.6 < z < 1.2 (mean z¯=0.85). This combination of colours provides an effective and least model-dependent means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasizes differences between AGN populations split by their U − V versus V − J colours. AGN in quiescent galaxies consist almost exclusively of bulges, while star-forming hosts are equally split between early- and late-type hosts. The position of AGN hosts on the U − V versusV − J diagram is then used to set limits on the accretion density of the Universe associated with evolved and star-forming systems independent of dust induced biases. It is found that most of the black hole growth at z≈ 0.40 and 0.85 is associated with star-forming hosts. Nevertheless, a non-negligible fraction of the X-ray luminosity density, about 15–20 per cent, at both z¯=0.40 and 0.85, is taking place in galaxies in the quiescent region of the U − V versus V − J diagram. For the low-redshift sub-sample, 0.1 < z < 0.6, we also find tentative evidence, significant at the 2σ level, that AGN split by their U − V and V − J colours have different Eddington ratio distributions. AGN in blue star-forming hosts dominate at relatively high Eddington ratios. In contrast, AGN in red quiescent hosts become increasingly important as a fraction of the total population towards low Eddington ratios. At higher redshift, z > 0.6, such differences are significant at the 2σ level only for sources with Eddington ratios ≳ 10^− 3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of supermassive black holes at the centres of galaxies. We compare these results with the predictions of theGALFORM semi-analytic model for the cosmological evolution of AGN and galaxies. This model postulates two black hole fuelling modes, the first is linked to star formation events and the second takes place in passive galaxies. GALFORM predicts that a substantial fraction of the black hole growth at z < 1 is associated with quiescent galaxies, in apparent conflict with the observations. Relaxing the strong assumption of the model that passive AGN hosts have zero star formation rate could bring those predictions in better agreement with the data.
Resumo:
We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array 12^CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple 12^CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L_FIR(8–1000 μm) = (1.6 ± 0.1) × 10^14 L_☉ μ^–1, where the total magnification μ_total = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L_FIR, component = (1.1 ± 0.2) × 10^13 L_☉) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ~ 500 km s^–1) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.
Resumo:
In the course of our 870 μm APEX/LABOCA follow-up of the Herschel Lensing Survey we have detected a source in AS1063 (RXC J2248.7-4431) that has no counterparts in any of the Herschel PACS/SPIRE bands, it is a Herschel “drop-out” with S_870/S_500 ≥ 0.5. The 870 μm emission is extended and centered on the brightest cluster galaxy, suggesting either a multiply imaged background source or substructure in the Sunyaev-Zel’dovich increment due to inhomogeneities in the hot cluster gas of this merging cluster. We discuss both interpretations with emphasis on the putative lensed source. Based on the observed properties and on our lens model we find that this source may be the first submillimeter galaxy (SMG) with a moderate far-infrared (FIR) luminosity (L_FIR < 10^12 L_⊙) detected so far at z > 4. In deep HST observations we identified a multiply imaged z ~ 6 source and measured its spectroscopic redshift to be z = 6.107 with VLT/FORS. This source may be associated with the putative SMG, but it is most likely offset spatially by 10−30 kpc and they may be interacting galaxies. With a FIR luminosity in the range [5−15] × 10^11 L_⊙ corresponding to a star formation rate in the range [80−260] M_⊙ yr^-1, this SMG would be more representative of the z > 4 dusty galaxies than the extreme starbursts detected so far. With a total magnification of ~25 it would open a unique window to the normal dusty galaxies at the end of the epoch of reionization.
Resumo:
Context. Accretion onto supermassive black holes is believed to occur mostly in obscured active galactic nuclei (AGN). Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Aims. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012, ApJ, 748, 142; objects with an infrared (IR) power-law spectral shape), are effective at selecting X-ray type-2 AGN (i.e., absorbed N_H > 10^22 cm^-2). Methods. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the Chandra Deep Field South. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption at the redshift of each source and a possible soft X-ray component. Results. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (N_H^intr > 10^22 cm^-2) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources (similar to 2/3) than for those sources that do not meet this IR selection criteria (~1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. Conclusions. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.
Resumo:
Using a compilation of 379 massive (stellar mass M ≳ 10^11 M_⊙) spheroid-like galaxies from the near-infrared Palomar/DEEP-2 survey, we investigated, up to z ∼ 1, whether the presence of companions depends on the size of the host galaxy. We explored the presence of companions for mass ratios with respect to the central massive galaxy down to 1 : 10 and 1 : 100, and within projected distances of 30, 50 and 100 kpc of these objects. We found evidence that these companions are equally distributed around both compact and extended massive spheroid-like galaxies. This suggests that, at least since z ∼ 1, the merger activity in these objects is nearly homogeneous across the whole population and that the merger history is not affected by the size of the host galaxy. Our results could indicate that compact and extended massive spheroid-like galaxies are increasing in size at the same rate.
Resumo:
We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.
Resumo:
Using an international, multi-model suite of historical forecasts from the World Climate Research Programme (WCRP) Climate-system Historical Forecast Project (CHFP), we compare the seasonal prediction skill in boreal wintertime between models that resolve the stratosphere and its dynamics (high-top') and models that do not (low-top'). We evaluate hindcasts that are initialized in November, and examine the model biases in the stratosphere and how they relate to boreal wintertime (December-March) seasonal forecast skill. We are unable to detect more skill in the high-top ensemble-mean than the low-top ensemble-mean in forecasting the wintertime North Atlantic Oscillation, but model performance varies widely. Increasing the ensemble size clearly increases the skill for a given model. We then examine two major processes involving stratosphere-troposphere interactions (the El Niño/Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO)) and how they relate to predictive skill on intraseasonal to seasonal time-scales, particularly over the North Atlantic and Eurasia regions. High-top models tend to have a more realistic stratospheric response to El Niño and the QBO compared to low-top models. Enhanced conditional wintertime skill over high latitudes and the North Atlantic region during winters with El Niño conditions suggests a possible role for a stratospheric pathway.
Resumo:
The accretion of minor satellites is currently proposed as the most likely mechanism to explain the significant size evolution of the massive galaxies during the last ∼10 Gyr. In this paper, we investigate the rest-frame colours and the average stellar ages of satellites found around massive galaxies (M_star ∼ 10^11 M_⊙) since z ∼ 2. We find that the satellites have bluer colours than their central galaxies. When exploring the stellar ages of the galaxies, we find that the satellites have similar ages to the massive galaxies that host them at high redshifts, while at lower redshifts they are, on average, ≳1.5 Gyr younger. If our satellite galaxies create the envelope of nearby massive galaxies, our results would be compatible with the idea that the outskirts of those galaxies are slightly younger, metal-poorer and with lower [α/Fe] abundance ratios than their inner regions.
Resumo:
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z ~ 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/Hβ ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/Hβ versus [N II]/Hα and [S II]/Hα) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly ~2/3 of the z ~ 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
Resumo:
We have studied the main evolutionary paths among the galaxy types residing on the massive end of the Red Sequence and nearby locations on the Green Valley during the last ∼9 Gyr. The morphological and star formation properties of a sample of these galaxies at 0 . 3 < z < 1 .5 with stellar masses M_∗ > 5 × 10^10 M_⊙ have been analysed. We present direct observational evidence for the first time of the existence of two main evolutionary paths among the different red galaxy types since z ∼ 1 .5, which provide some clues on the nature of the processes that have governed the assembly of present-day massive quiescent galaxies. The results are in excellent agreement with the hierarchical evolutionary framework proposed in the Eliche-Moral et al. (2010) model. Data from SHARDS (one of the ESO/GTC Large Programmes approved in 2009A) will complement and improve the present findings, shedding some light into many of the still unsettled questions concerning the migration of galaxies from the Blue Cloud to the Red Sequence at z < 1 .5.
Resumo:
El profesorado de la red docente durante el curso 2011/12 ha realizado un proyecto coordinar las las asignaturas del primer curso del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la Escuela Politécnica Superior. Se ha realizado una puesta en común con los coordinadores de todos los cursos para realizar las recomendaciones de matriculación a los estudiantes que realizan su matricula a tiempo parcial o no superan cada curso todos los créditos matriculados. Se ha realizado un ajuste de los temarios con las asignaturas que comienzan su implantación en el siguiente curso y por otro lado una coordinación en la evaluación para eliminar las numerosas coincidencias de evaluaciones continuas, de diferentes actividades en cada semana.
Resumo:
El reto de implantar los nuevos grados exige un continuado esfuerzo de coordinación de las asignaturas de cada curso y de los diferentes cursos entres sí. En este trabajo se presentan los resultados de los diferentes proyectos que se han realizado para coordinar las asignaturas de los tres primeros cursos del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la Escuela Politécnica Superior. Además se analiza la coordinación de los proyectos entre sí, analizando los cambios surgidos en las fichas de las asignaturas, evaluación, metodología, etc. También se presenta una puesta en común con los coordinadores de todos los cursos para realizar las recomendaciones de matriculación a los estudiantes que realizan su matrícula a tiempo parcial o no superan cada curso todos los créditos matriculados. Y por último, se estudia la continuidad con los contenidos de las asignaturas que comienzan su implantación en el siguiente curso y por otro lado la coordinación en la evaluación para eliminar las numerosas coincidencias de evaluaciones continuas, de diferentes actividades en cada semana.