849 resultados para Applied artificial intelligence


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática. Área de Especialização em Tecnologias do Conhecimento e Decisão.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho de projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho de Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O panorama atual da emergência e socorro de primeira linha em Portugal, carateriza-se por uma grande aposta ao longo dos últimos anos num incremento contínuo da qualidade e da eficiência que estes serviços prestam às populações locais. Com vista à prossecução do objetivo de melhoria contínua dos serviços, foram realizados ao longo dos últimos anos investimentos avultados ao nível dos recursos técnicos e ao nível da contratação e formação de recursos humanos altamente qualificados. Atualmente as instituições que prestam socorro e emergência de primeira linha estão bem dotadas ao nível físico e ao nível humano dos recursos necessários para fazerem face aos mais diversos tipos de ocorrências. Contudo, ao nível dos sistemas de informação de apoio à emergência e socorro de primeira linha, verifica-se uma inadequação (e por vezes inexistência) de sistemas informáticos capazes de suportar convenientemente o atual contexto de exigência e complexidade da emergência e socorro. Foi feita ao longo dos últimos anos, uma forte aposta na melhoria dos recursos físicos e dos recursos humanos encarregues da resposta àsemergência de primeira linha, mas descurou-se a área da gestão e análise da informação sobre as ocorrências, assim como, o delinear de possíveis estratégias de prevenção que uma análise sistematizada da informação sobre as ocorrências possibilita. Nas instituições de emergência e socorro de primeira linha em Portugal (bombeiros, proteção civil municipal, PSP, GNR, polícia municipal), prevalecem ainda hoje os sistemas informáticos apenas para o registo das ocorrências à posteriori e a total inexistência de sistemas de registo de informação e de apoio à decisão na alocação de recursos que operem em tempo real. A generalidade dos sistemas informáticos atualmente existentes nas instituições são unicamente de sistemas de backoffice, que não aproveitam a todas as potencialidades da informação operacional neles armazenada. Verificou-se também, que a geo-localização por via informática dos recursos físicos e de pontos de interesse relevantes em situações críticas é inexistente a este nível. Neste contexto, consideramos ser possível e importante alinhar o nível dos sistemas informáticos das instituições encarregues da emergência e socorro de primeira linha, com o nível dos recursos físicos e humanos que já dispõem atualmente. Dado que a emergência e socorro de primeira linha é um domínio claramente elegível para a aplicação de tecnologias provenientes dos domínios da inteligência artificial (nomeadamente sistemas periciais para apoio à decisão) e da geo-localização, decidimos no âmbito desta tese desenvolver um sistema informático capaz de colmatar muitas das lacunas por nós identificadas ao nível dos sistemas informáticos destas instituições. Pretendemos colocar as suas plataformas informáticas num nível similar ao dos seus recursos físicos e humanos. Assim, foram por nós identificadas duas áreas chave onde a implementação de sistemas informáticos adequados às reais necessidades das instituições podem ter um impacto muito proporcionar uma melhor gestão e otimização dos recursos físicos e humanos. As duas áreas chave por nós identificadas são o suporte à decisão na alocação dos recursos físicos e a geolocalização dos recursos físicos, das ocorrências e dos pontos de interesse. Procurando fornecer uma resposta válida e adequada a estas duas necessidades prementes, foi desenvolvido no âmbito desta tese o sistema CRITICAL DECISIONS. O sistema CRITICAL DECISIONS incorpora um conjunto de funcionalidades típicas de um sistema pericial, para o apoio na decisão de alocação de recursos físicos às ocorrências. A inferência automática dos recursos físicos, assenta num conjunto de regra de inferência armazenadas numa base de conhecimento, em constante crescimento e atualização, com base nas respostas bem sucedidas a ocorrências passadas. Para suprimir as carências aos nível da geo-localização dos recursos físicos, das ocorrências e dos pontos de interesse, o sistema CRITICAL DECISIONS incorpora também um conjunto de funcionalidades de geo-localização. Estas permitem a geo-localização de todos os recursos físicos da instituição, a geo-localização dos locais e as áreas das várias ocorrências, assim como, dos vários tipos de pontos de interesse. O sistema CRITICAL DECISIONS visa ainda suprimir um conjunto de outras carências por nós identificadas, ao nível da gestão documental (planos de emergência, plantas dos edifícios) , da comunicação, da partilha de informação entre as instituições de socorro e emergência locais, da contabilização dos tempos de serviço, entre outros. O sistema CRITICAL DECISIONS é o culminar de um esforço colaborativo e contínuo com várias instituições, responsáveis pela emergência e socorro de primeira linha a nível local. Esperamos com o sistema CRITICAL DECISIONS, dotar estas instituições de uma plataforma informática atual, inovadora, evolutiva, com baixos custos de implementação e de operação, capaz de proporcionar melhorias contínuas e significativas ao nível da qualidade da resposta às ocorrências, das capacidades de prevenção e de uma melhor otimização de todos os tipos de recursos que têm ao dispor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção de Grau de Doutor em Bioquímica,Bioquímica Estrutural, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantidade e variedade de conteúdos multimédia actualmente disponíveis cons- tituem um desafio para os utilizadores dado que o espaço de procura e escolha de fontes e conteúdos excede o tempo e a capacidade de processamento dos utilizado- res. Este problema da selecção, em função do perfil do utilizador, de informação em grandes conjuntos heterogéneos de dados é complexo e requer ferramentas específicas. Os Sistemas de Recomendação surgem neste contexto e são capazes de sugerir ao utilizador itens que se coadunam com os seus gostos, interesses ou necessidades, i.e., o seu perfil, recorrendo a metodologias de inteligência artificial. O principal objectivo desta tese é demonstrar que é possível recomendar em tempo útil conteúdos multimédia a partir do perfil pessoal e social do utilizador, recorrendo exclusivamente a fontes públicas e heterogéneas de dados. Neste sen- tido, concebeu-se e desenvolveu-se um Sistema de Recomendação de conteúdos multimédia baseado no conteúdo, i.e., nas características dos itens, no historial e preferências pessoais e nas interacções sociais do utilizador. Os conteúdos mul- timédia recomendados, i.e., os itens sugeridos ao utilizador, são provenientes da estação televisiva britânica, British Broadcasting Corporation (BBC), e estão classificados de acordo com as categorias dos programas da BBC. O perfil do utilizador é construído levando em conta o historial, o contexto, as preferências pessoais e as actividades sociais. O YouTube é a fonte do histo- rial pessoal utilizada, permitindo simular a principal fonte deste tipo de dados - a Set-Top Box (STB). O historial do utilizador é constituído pelo conjunto de vídeos YouTube e programas da BBC vistos pelo utilizador. O conteúdo dos vídeos do YouTube está classificado segundo as categorias de vídeo do próprio YouTube, sendo efectuado o mapeamento para as categorias dos programas da BBC. A informação social, que é proveniente das redes sociais Facebook e Twit- ter, é recolhida através da plataforma Beancounter. As actividades sociais do utilizador obtidas são filtradas para extrair os filmes e séries que são, por sua vez, enriquecidos semanticamente através do recurso a repositórios abertos de dados interligados. Neste caso, os filmes e séries são classificados através dos géneros da IMDb e, posteriormente, mapeados para as categorias de programas da BBC. Por último, a informação do contexto e das preferências explícitas, através da classificação dos itens recomendados, do utilizador são também contempladas. O sistema desenvolvido efectua recomendações em tempo real baseado nas actividades das redes sociais Facebook e Twitter, no historial de vídeos Youtube e de programas da BBC vistos e preferências explícitas. Foram realizados testes com cinco utilizadores e o tempo médio de resposta do sistema para criar o conjunto inicial de recomendações foi 30 s. As recomendações personalizadas são geradas e actualizadas mediante pedido expresso do utilizador.