985 resultados para Alternative Transients Program
Resumo:
Haemophilus influenzae is one of the most important bacterial agents of otitis and sinusitis. H. influenzae type b (Hib) is one of the main causes of meningitis, pneumonia, and septicemia in nonvaccinated children under 6 years of age. The aims of this study were to determine the prevalence of H. influenzae and Hib oropharyngeal colonization prior to the onset of the Hib vaccination program in Brazil in previously healthy children and to assess the susceptibility profile of this microorganism to a selected group of antimicrobials that are used to treat acute respiratory infections. METHOD: Cultures of Haemophilus influenzae were made from oropharynx swabs from 987 children under 6 years of age who were enrolled in 29 day-care centers in Taubaté (a city of São Paulo state, Brazil) between July and December 1998. RESULTS: The prevalence of H. influenzae carriers was 17.4%, and only 5.5% of the strains were beta-lactamase producers. The prevalence of Hib carriers was high, 7.3% on average (range, 0.0 - 33.3%). CONCLUSIONS: The low prevalence of colonization by penicillin-resistant strains indicates that it is not necessary to substitute ampicilin or amoxicilin to effectively treat otitis and sinusitis caused by H. influenzae in Taubaté.
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Impactos territoriais de processos de cooperação transfronteiriça : caso de estudo : Elvas e Badajoz
Resumo:
A cooperação transfronteiriça é vista na União Europeia como um modelo de integração territorial e como uma alternativa para o desenvolvimento das regiões de fronteira, devido ao seu afastamento em relação aos grandes centros urbanos. No início da década de 90 foi lançado o programa do INTERREG tendo em vista a maior permeabilidade da fronteira e o desenvolvimento destes territórios, entre os quais o das regiões do Alto Alentejo e da Extremadura. A grande proximidade territorial entre Elvas e Badajoz permitiu desde sempre relações de cooperação mais ou menos intensas e consentidas, mesmo antes da abertura da fronteira, motivadas sobretudo pela diferença de valor entre as duas moedas. Contudo, com a entrada conjunta dos países ibéricos na CEE (1986), essas relações intensificaram-se ao nível do comércio, do emprego, do turismo, do lazer e da procura de serviços. Impactos territoriais como a procura e utilização conjunta de infraestruturas e de espaços públicos pelas populações das duas cidades, a promoção e realização de espetáculos culturais, a prática de cross-border shopping, a procura de uma segunda residência, em ambos os lados da fronteira, e a tendência para uma urbanização contínua no futuro, justificaram a criação da Eurocidade Elvas-Badajoz (2013). Esta iniciativa tem como principais objetivos promover a conceção, gestão e prestação conjunta de serviços, desenvolver projetos de cooperação em áreas de interesse comum, estimular a cooperação entre empresas e atrair investimentos geradores de novos postos de trabalho. No entanto os desafios para ambas as cidades prendem-se com a existência de um quadro jurídico e legal distinto que tem condicionado algumas das ações ou iniciativas e o desenvolvimento territorial conjunto ainda carece de uma proposta estratégica.
Resumo:
The purpose of this project is to analyse and evaluate if the rural tourism cottage Quinta dos I’s will be profitable within the first five years of operation. It starts with a brief description of the business, followed by an industry analysis of the rural tourism market in Portugal and an intensive competitor analysis to evaluate Quinta dos I’s’ competitive advantages. The project then defines a marketing plan to generate awareness and establish the cottage in the market. Finally, a financial analysis is performed to examine the outcome of Quinta dos I’s’ recommended strategic activities. The results of this project show that the cottage is profitable after the first year of operation and expects to grow annually.
Resumo:
Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.
Resumo:
Dissertação de mestrado em Estudos de Gestão
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.
Resumo:
The MAP-i doctoral program of the Universities of Minho, Aveiro and Porto
Resumo:
The problem of work-related musculoskeletal disorders is a rising concern in the companies. Thus, occupational gym has emerged as a possible solution to this problem because it leads to changes in the lifestyle by promoting health and physical activity. In this regard, this study purposes to evaluate the impact of an occupational gym program in the neck and shoulder flexibility in office workers. In order to evaluate the levels of flexibility, a universal goniometer was used for pre and post occupational gym program implementation. The program had an extension of three months, with 15 minutes sessions twice a week. The sample consisted in an intervention group comprised of 30 elements and a control group composed of 8 elements. The results suggest that there were improvements in flexibility at the cervical spine and shoulder segments levels. The increase on flexibility between the two time points in the intervention group was significant, unlike the control group that presented only slight improvements.
Resumo:
We elaborated an alternative culture method, which we denominated PKO (initials in tribute of respect to Petroff, Kudoh and Ogawa), for isolating Mycobacterium tuberculosis from sputum for diagnosis of pulmonary tuberculosis (TB), and to compare its performance with the Swab and Petroff methods. For the technique validation, sputum samples from patients suspected of pulmonary TB cases were examined by acid-fast microscopy (direct and concentrated smear), PKO, Swab and Petroff methods. We found that Petroff and PKO methods have parity in the effectiveness of M. tuberculosis isolation. However, by the PKO method, 65% of isolated strains were detected in a period of £15 days, while by the Petroff method the best detection was in an interval of 16-29 days (71%). In positive smear samples, the average time of PKO isolation is only superior to the one related for Bactec 460TB. In conclusion, the exclusion of the neutralization stage of pH in the PKO reduces the manipulation of the samples, diminishes the execution time of the culture according to the Petroff method and facilitates the qualification of professionals involved in the laboratorial diagnosis of Tuberculosis.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
Creativity and its promotion are widespread concerns in education. However, few efforts have been made to implement intervention programs designed to promote creativity and other related aspects (e.g., academic motivation). The Future Problem Solving Program International (FPSPI), aimed for training creativity representations and creative problem solving skills in young people, has been one of the most implemented programs. This intervention’s materials and activities were adapted for Portuguese students, and a longitudinal study was conducted. The program was implemented during four months, in weekly sessions, by thirteen teachers. Teachers received previous training for the program and during the program’s implementation. Intervention participants included 77 Basic and Secondary Education students, and control participants included 78 equivalent students. Pretest-posttest measures of academic motivation and creativity representations were collected. Results suggest a significant increase, in the intervention group, in motivation and the appropriate representations of creativity. Practical implications and future research perspectives are presented.