920 resultados para Acceleration pattern recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes a novel methodology for automatic contour extraction from 2D images of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most contour-based shape analysis methods cannot be used to characterize such cells because of overlaps between neuronal processes. The proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking stage iteratively labels all valid pixel of branches, tip to a critical region, where it determines the suitable direction to proceed. Finally, the labeled skeleton segments are followed in order to yield the parametric contour of the neuronal shape under analysis. The reported system was successfully tested with respect to several images and the results from a set of three neuron images are presented here, each pertaining to a different class, i.e. alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms successfully got across all these overlaps. The method has also been found to exhibit robustness even for images with close parallel segments. The proposed method is robust and may be implemented in an efficient manner. The introduction of this approach should pave the way for more systematic application of contour-based shape analysis methods in neuronal morphology. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a new module of the expert system SISTEMAT used for the prediction of the skeletons of neolignans by (13)C NMR, (1)H NMR and botanical data obtained from the literature. SISTEMAT is composed of MACRONO, SISCONST, C13MACH, H1MACH and SISOCBOT programs, each analyzing data of the neolignan in question to predict the carbon skeleton of the compound. From these results, the global probability is computed and the most probable skeleton predicted. SISTEMAT predicted the skeletons of 75% of the 20 neolignans tested, in a rapid and simple procedure demonstrating its advantage for the structural elucidation of new compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low-cost method is proposed to classify wine and whisky samples using a disposable voltammetric electronic tongue that was fabricated using gold and copper substrates and a pattern recognition technique (Principal Component Analysis). The proposed device was successfully used to discriminate between expensive and cheap whisky samples and to detect adulteration processes using only a copper electrode. For wines, the electronic tongue was composed of copper and gold working electrodes and was able to classify three different brands of wine and to make distinctions regarding the wine type, i.e., dry red, soft red, dry white and soft white brands. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This masters thesis describes the development of signal processing and patternrecognition in monitoring Parkison’s disease. It involves the development of a signalprocess algorithm and passing it into a pattern recogniton algorithm also. Thesealgorithms are used to determine , predict and make a conclusion on the study ofparkison’s disease. We get to understand the nature of how the parkinson’s disease isin humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the basic research of Chase and Simon (1973) is questioned, and we seek new results by analyzing the errors of experts and beginners chess players in experiments to reproduce chess positions. Chess players with different levels of expertise participated in the study. The results were analyzed by a Brazilian grandmaster, and quantitative analysis was performed with the use of statistical methods data mining. The results challenge significantly, the current theories of expertise, memory and decision making in this area, because the present theory predicts piece on square encoding, in which players can recognize the strategic situation reproducing it faithfully, but commit several errors that the theory can¿t explain. The current theory can¿t fully explain the encoding used by players to register a board. The errors of intermediary players preserved fragments of the strategic situation, although they have committed a series of errors in the reconstruction of the positions. The encoding of chunks therefore includes more information than that predicted by current theories. Currently, research on perception, trial and decision is heavily concentrated on the idea of pattern recognition". Based on the results of this research, we explore a change of perspective. The idea of "pattern recognition" presupposes that the processing of relevant information is on "patterns" (or data) that exist independently of any interpretation. We propose that the theory suggests the vision of decision-making via the recognition of experience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the basic research of Chase and Simon (1973) is questioned, and we seek new results by analyzing the errors of experts and beginners chess players in experiments to reproduce chess positions. Chess players with different levels of expertise participated in the study. The results were analyzed by a Brazilian grandmaster, and quantitative analysis was performed with the use of statistical methods data mining. The results challenge significantly, the current theories of expertise, memory and decision making in this area, because the present theory predicts piece on square encoding, in which players can recognize the strategic situation reproducing it faithfully, but commit several errors that the theory can¿t explain. The current theory can¿t fully explain the encoding used by players to register a board. The errors of intermediary players preserved fragments of the strategic situation, although they have committed a series of errors in the reconstruction of the positions. The encoding of chunks therefore includes more information than that predicted by current theories. Currently, research on perception, trial and decision is heavily concentrated on the idea of 'pattern recognition'. Based on the results of this research, we explore a change of perspective. The idea of 'pattern recognition' presupposes that the processing of relevant information is on 'patterns' (or data) that exist independently of any interpretation. We propose that the theory suggests the vision of decision-making via the recognition of experience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.