516 resultados para ALKANE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper(II) bromide and chloride complexes of the new heptadentate ligand 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L) have been prepared. For the bromide complexes, chains of novel, approximately C-2-symmetric, chiral [Cu-2(L)Br-2](2+) 'wedge-shaped' tectons are found. The links between the dicopper tectons and the overall chirality and packing of the chains are dictated by the bromide ion content, not the counter anion. In contrast, the chloride complexes exhibit linked asymmetric [Cu-2(L)Cl-3](+) tectons with distinct N3CuCl2 and N4CuCl2 centres in the solid. The overall structures of the dicopper bromide and chloride units persist in solution irrespective of the halide. The redox chemistry of the various species is also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Coupling from the guided mode to surface plasmons was promoted following UV laser irradiation of the coated region through a phase mask, which generated a surface relief grating structure. The devices showed high spectral sensitivities and strong coupling for low refractive indices as compared to other grating-type fibre devices. The plasmonic devices were used to detect the variation in the refractive indices of alkane gases with measured wavelength and coupling sensitivity to index of 3400 nm RIU-1 and 8300 dB RIU-1, respectively. As a demonstration of the performance of these gas sensors, a minimum concentration of 2% by volume of butane in ethane was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the problems arising from the inherent instability of emulsions are discussed. Aspects of emulsion stability are described and particular attention is given to the influence of the chemical nature of the dispersed phase on adsorbed film structure and stability, Emulsion stability has been measured by a photomicrographic technique. Electrophoresis, interfacial tension and droplet rest-time data were also obtained. Emulsions were prepared using a range of oils, including aliphatic and aromatic hydrocarbons, dispersed In a solution of sodium dodecyl sulphate. In some cases a small amount of alkane or alkanol was incorporated into the oil phase. In general the findings agree with the classical view that the stability of oil-in-water emulsions is favoured by a closely packed interfacial film and appreciable electric charge on the droplets. The inclusion of non-ionic alcohol leads to enhanced stability, presumably owing to the formation of a "mixed" interfacial film which is more closely packed and probably more coherent than that of the anionic surfactant alone. In some instances differences in stability cannot he accounted for simply by differences in interfacial adsorption or droplet charge. Alternative explanations are discussed and it is postulated that the coarsening of emulsions may occur not only hy coalescence but also through the migration of oil from small droplets to larger ones by molecular diffusion. The viability of using the coalescence rates of droplets at a plane interface as a guide to emulsion stability has been researched. The construction of a suitable apparatus and the development of a standard testing procedure are described. Coalescence-time distributions may be correlated by equations similar to those presented by other workers, or by an analysis based upon the log-normal function. Stability parameters for a range of oils are discussed in terms of differences in film drainage and the natl1re of the interfacial film. Despite some broad correlations there is generally poor agreement between droplet and emulsion stabilities. It is concluded that hydrodynamic factors largely determine droplet stability in the systems studied. Consequently droplet rest-time measurements do not provide a sensible indication of emulsion stability,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, selected results obtained so far on Fe(II) spin crossover compounds of 1,2,4-triazole, isoxazole and tetrazole derivatives are summarized and analysed. These materials include the only compounds known to have Fe(II)N6 spin crossover chromophores consisting of six chemically identical heterocyclic ligands. Particular attention is paid to the coordination modes for substituted 1,2,4-triazole derivatives towards Fe(II) resulting in polynuclear and mononuclear compounds exhibiting Fe(II) spin transitions. Furthermore, the physical properties of mononuclear Fe(II) isoxazole and 1-alkyl-tetrazole compounds are discussed in relation to their structures. It will also be shown that the use of α,β- and α,ω-bis(tetrazol-1-yl)alkane type ligands allowed a novel strategy towards obtaining polynuclear Fe(II) spin crossover materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfonic acid functionalised periodic mesoporous organosilicas (PrSO3 H-PMOs) with tunable hydrophobicity were synthesised via a surfactant-templating route, and characterised by porosimetry, TEM, XRD, XPS, inverse gas chromatography (IGC) and ammonia pulse chemisorption. IGC reveals that incorporation of ethyl or benzyl moieties into a mesoporous SBA-15 silica framework significantly increases the non-specific dispersive surface energy of adsorption for alkane adsorption, while decreasing the free energy of adsorption of methanol, reflecting increased surface hydrophobicity. The non-specific dispersive surface energy of adsorption of PMO-SO3H materials is strongly correlated with their activity towards palmitic acid esterification with methanol, demonstrating the power of IGC as an analytical tool for identifying promising solid acid catalysts for the esterification of free fatty acids. A new parameter [-ΔGCNP-P], defined as the per carbon difference in Gibbs free energy of adsorption between alkane and polar probe molecules, provides a simple predictor of surface hydrophobicity and corresponding catalyst activity in fatty acid esterification. © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of organic matter (OM) sources in sediments and soils is a key to better understand the biogeochemical cycling of carbon in aquatic environments. While traditional molecular marker-based methods have provided such information for typical two end member (allochthonous/terrestrial vs. autochthonous/microbial)-dominated systems, more detailed, biomass-specific assessments are needed for ecosystems with complex OM inputs such as tropical and sub-tropical wetlands and estuaries where aquatic macrophytes and macroalgae may play an important role as OM sources. The aim of this study was to assess the utility of a combined approach using compound specific stable carbon isotope analysis and an n-alkane based proxy (Paq) to differentiate submerged and emergent/terrestrial vegetation OM inputs to soils/sediments from a sub-tropical wetland and estuarine system, the Florida Coastal Everglades. Results show that Paq values (0.13–0.51) for the emergent/terrestrial plants were generally lower than those for freshwater/marine submerged vegetation (0.45–1.00) and that compound specific δ13C values for the n-alkanes (C23 to C31) were distinctively different for terrestrial/emergent and freshwater/marine submerged plants. While crossplots of the Paq and n-alkane stable isotope values for the C23n-alkane suggest that OM inputs are controlled by vegetation changes along the freshwater to marine transect, further resolution regarding OM input changes along this landscape was obtained through principal component analysis (PCA), successfully grouping the study sites according to the OM source strengths. The data show the potential for this n-alkane based multi-proxy approach as a means of assessing OM inputs to complex ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.