924 resultados para ABORTIVE PLANT EFFECTS
Resumo:
Ethylene is a plant hormone that is of fundamental importance to in vitro morphogenesis, but in many species, it has not been thoroughly studied. Its relationship with polyamines has been studied mainly because the two classes of hormones share a common biosynthetic precursor, S-adenosylmethionine (SAM). In order to clarify whether competition between polyamines and ethylene influences in vitro morphogenetic responses of Passiflora cincinnata Mast., a climacteric species, different compounds were used that act on ethylene biosynthesis and action, or as ethylene scavengers. Treatment with the ethylene inhibitor, aminoethoxyvinylglycine (AVG) caused a greater regeneration frequency in P. cincinnata, whereas treatment with the ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid (ACC) lessened regeneration frequencies. The data suggested that levels of polyamines and ethylene are not correlated with morphogenic responses in P. cincinnata. It was ascertained that neither the absolute ethylene and polyamine levels, nor competition between the compounds, correlated to the obtained morphogenic responses. However, sensitivity to, and signaling by, ethylene appears to play an important role in differentiation. This study reinforces previous reports regarding the requirement of critical concentrations and temporal regulation of ethylene levels for morphogenic responses. Temporal regulation also appeared to be a key factor in competition between the two biosynthetic pathways, without having any effects on morphogenesis. Further studies investigating the silencing or overexpression of genes related to ethylene perception, under the influence of polyamines in cell differentiation are extremely important for the complete understanding of this process.
Resumo:
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Resumo:
1. Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates (Raphia farinifera and Laurus nobilis) were decomposed in fine- and coarse-mesh litterbags both above and below ground for approximately 1 year. 3. Decomposition was rapid, with >95% mass loss within a year at most sites. Litter quality, placement and mesofaunal exclusion all independently affected decomposition, but the magnitude depended upon site. Both the average decomposition rate at each site and the ratio of above- to below-ground decay increased linearly with annual precipitation, explaining 60-65% of among-site variation. Excluding mesofauna had the largest impact on decomposition, reducing decomposition rates by half on average, but the magnitude of decrease was largely independent of climate. This suggests that the decomposer community might play an important role in explaining patterns of decomposition among sites. Which litter type decomposed fastest varied by site, but was not related to climate. 4. Synthesis. A key goal of ecology is to identify general patterns across ecological communities, as well as relevant site-specific details to understand local dynamics. Our pan-tropical study shows that certain aspects of decomposition, including average decomposition rates and the ratio of above- to below-ground decomposition are highly correlated with a simple climatic index: mean annual precipitation. However, we found no relationship between precipitation and effects of mesofaunal exclusion or litter type, suggesting that site-specific details may also be required to understand how these factors affect decomposition at local scales.
Resumo:
BACKGROUND AND PURPOSE The serine and cysteine peptidase inhibitor, BbCI, isolated from Bauhinia bauhinioides seeds, is similar to the classical plant Kunitz inhibitor, STI, but lacks disulphide bridges and methionine residues. BbCI blocks activity of the serine peptidases, elastase (K(iapp) 5.3 nM) and cathepsin G (K(iapp) 160.0 nM), and the cysteine peptidase cathepsin L (K(iapp) 0.2 nM). These three peptidases play important roles in the inflammatory process. EXPERIMENTAL APPROACH We measured the effects of BbCI on paw oedema and on leucocyte accumulation in pleurisy, both induced by carrageenan. Leucocyte-endothelial cell interactions in scrotal microvasculature in Wistar rats were investigated using intravital microscopy. Cytokine levels in pleural exudate and serum were measured by ELISA. KEY RESULTS Pretreatment of the animals with BbCI (2.5 mg.kg(-1)), 30 min before carrageenan-induced inflammation, effectively reduced paw oedema and bradykinin release, neutrophil migration into the pleural cavity. The number of rolling, adhered and migrated leucocytes at the spermatic fascia microcirculation following carrageenan injection into the scrotum were reduced by BbCI pretreatment. Furthermore, levels of the rat chemokine cytokine-induced neutrophil chemo-attractant-1 were significantly reduced in both pleural exudates and serum from animals pretreated with BbCI. Levels of interleukin-1 beta or tumour necrosis factor-alpha, however, did not change. CONCLUSIONS AND IMPLICATIONS Taken together, our data suggest that the anti-inflammatory properties of BbCI may be useful in investigations of other pathological processes in which human neutrophil elastase, cathepsin G and cathepsin L play important roles.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.
Resumo:
Aromatherapy uses essential oils (EOs) for several medical purposes, including relaxation. The association between the use of aromas and a decrease in anxiety could be a valuable instrument in managing anxiety in an ever increasing anxiogenic daily life style. Linalool is a monoterpene commonly found as the major volatile component of EOs in several aromatic plant species. Adding to previously reported sedative effects of inhaled linalool, the aim of this study was to investigate the effects of inhaled linalool on anxiety, aggressiveness and social interaction in mice. Additionally, we investigated the effects of inhaled linalool on the acquisition phase of a step-down memory task in mice. Inhaled linalool showed anxiolytic properties in the light/dark test, increased social interaction and decreased aggressive behavior; impaired memory was only seen the higher dose of linalool. These results strengthen the suggestion that inhaling linalool rich essential oils can be useful as a mean to attain relaxation and counteract anxiety. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Forest nurseries are essential for producing good quality seedlings, thus being a key element in the reforestation process. With increasing climate change awareness, nursery managers are looking for new tools that can help reduce the effects of their operations on the environment. The ZEPHYR project, funded by the European Commission under the Seventh Framework Programme (FP7), has the objective of finding new alternatives for nurseries by developing innovative zero-impact technologies for forest plant production. Due to their direct relationship to the energy consumption of the nurseries, one of the main elements addressed are the grow lights used for the pre-cultivation. New LED luminaires with a light spectrum tailored to the seedlings’ needs are being studied and compared against the traditional fluorescent lamps. Seedlings of Picea abies and Pinus sylvestris were grown under five different light spectra (one fluorescent and 4 LED) during 5 weeks with a photoperiod of 16 hours at 100 μmol∙m-2∙s-1 and 60% humidity. In order to evaluate if these seedlings were able cope with real field stress conditions, a forest field trial was also designed. The terrain chosen was a typical planting site in mid-Sweden after clear-cutting. Two vegetation periods after the outplanting, the seedlings that were pre-cultivated under the LED lamps have performed at least as well as those that were grown under fluorescent lights. These results show that there is a good potential for lightning substitution in forestry nurseries.
Resumo:
The control of Pratylenchus goodeyi a common nematode parasite of banana crop in Madeira Island can benefit from searching for natural nematicides through plants extracts. With this aim we submitted Solanum nigrum and S. sisymbriifolium dried plants to a sequential extraction in the solvent sequence of dichloromethane, acetone, ethanol and water, and to na aqueous extraction of the fresh and dried plants. Analyses with the extracts at several concentrations were used to assess mobility and mortality on P. goodeyi. Results showed that the water extract and aqueous extracts from both plants at a concentration of 10 mg/mL affected nematode mobility and caused mortality but the acetone extract from S. nigrum was the most efficient, causing 100% mortality whereas dichloromethane had no effect on P. goodeyi. Determination of the lipophilic and phenolic compounds present in the two most effective Solanum extracts (acetone and water) and in dichloromethane extract revealed that some of these compounds had nematicidal activity. S. nigrum acetone extract (10 mg/mL) was used to find out the nematicidal potential following the effect at gene expression level and nematode behaviour. Genes coding for calreticulin and beta-1,4- endoglucanase related to parasitism and translocon-associated protein putatively connected to stress were obtained and its relative expression assessed in nematodes exposed to the extract. Results revealed that expression of Pg-CRT decreased showing to influence the infection, Pg-ENG remained steady and Pg-TRAPδ was induced over time exposure. Biological assays showed that P. goodeyi mobility and ability to infect the banana roots were affected as a decrease in the number of nematodes that reached the roots was obtained with the increased exposure time to the extract being implicated in the infection success. The information obtained from this thesis showed that S. nigrum has potential to be used for the development of a new control strategy against plant-parasitic nematodes.
Resumo:
Flavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA(2) isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to. study the effect of flavonoids on PLA(2). We observed that a treatment of PLA(2) with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA(2) possess a second pharmacological site which does not affect or depend on the enzymatic activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present work was carried out to study the effects of mineral nutrition on peanut (Arachis hypogaea L) cv. IAC Runner-886 and hairy beggarticks (Bidens pilosa L) growth, when submitted to inter- and intraspecific competition. The treatments consisted of two peanut plants per pot, two hairy beggarticks per pot and one plant of each species per pot. The plants were nourished with Hoagland and Arnon (1950) complete solution, or without potassium, or without phosphorus or without nitrogen. Sixty days after planting, no inter- or intraspecific competition effect on growth characteristics of peanut was verified and nutrition was not a limiting factor to the culture. No interaction between competition and nutrition effects was observed for both species. The weed suffered more negative effects from intraspecific competition and nutrition. The absence of N had a pronounced effect compared to the other elements, resulting in a reduction in all the evaluated characteristics. The deficiency of nutrients and competition affected the weed more than the crop, showing that peanut was more competitive than hairy beggarticks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aerial spraying of plant ripeners on sugar cane (Saccharum officinarum L.) crops causes often the contamination of neighboring areas, which subsidizes formal complaints from the neighbors. These contaminations are due to spraying taking place during inadequate environmental conditions or from technical mistakes during the application. One of the most important causes of this contamination is the susceptibility of the species being cultivated surrounding sugar cane. In order to evaluate the effects of sugar cane plant ripeners trinexapac-ethyl and sulfometuron-methyl on peanuts, cotton, potato, coffee, citrus, beans, sunflower, cassava, rubber, soybean, and grapes, eleven experiments - one for each species - were carried out from May 2009 to Jan. 2010. The field experiment was set according to a completely random design with five treatments and four replications. Just before or during flowering, a single treatment of trinexapac-ethyl at 100 or 200 g ha-1 and sulfometuron-methyl at 7.5 or 15 g ha-1 was applied to plants. A control treatment (plants not treated) for each species was part of each experiment. Trinexapac, at the doses of 100 and 200 g ha-1, showed selectivity to peanuts, cotton, potato, coffee, citrus, sunflower, cassava, rubber, soybean, and grape. At the lowest dose (100 g ha-1), it was selective for bean. Sulfometuron, at the dose of 7.5 g ha-1, was selective for peanuts and, at the two studied doses (7.5 and 15 g ha-1), it was selective for coffee, citrus, cassava, and rubber.
Resumo:
Silicon has beneficial effects on many crops, mainly under biotic and abiotic stresses. Silicon can affect biochemical, physiological, and photosynthetic processes and, consequently, alleviates drought stress. However, the effects of Si on potato (Solanum tuberosum L.) plants under drought stress are still unknown. The objective of this study was to evaluate the effect of Si supply on some biochemical characteristics and yield of potato tubers, either exposed or not exposed to drought stress. The experiment was conducted in pots containing 50 dm(3) of a Typic Acrortox soil (33% clay, 4% silt, and 63% sand). The treatments consisted of the absence or presence of Si application (0 and 284.4 mg dm(-3)), through soil amelioration with dolomitic lime and Ca and Mg silicate, and in the absence or presence of water deficit (-0.020 MPa and -0.050 MPa soil water potential, respectively), with eight replications. Silicon application and water deficit resulted in the greatest Si concentration in potato leaves. Proline concentrations increased under lower water availability and higher Si availability in the soil, which indicates that Si may be associated with plant osmotic adjustment. Water deficit and Si application decreased total sugars and soluble proteins concentrations in the leaves. Silicon application reduced stalk lodging and increased mean tuber weight and, consequently, tuber yield, especially in the absence of water stress.