986 resultados para 260603 Ionospheric and Magnetospheric Physics
Resumo:
Ultracold gases in ring geometries hold promise for significant improvements of gyroscopic sensitivity. Recent experiments have realized atomic and molecular storage rings with radii in the centimeter range, sizes whose practical use in inertial sensors requires velocities significantly in excess of typical recoil velocities. We use a combination of analytical and numerical techniques to study the coherent acceleration of matter waves in circular waveguides, with particular emphasis on its impact on single-mode propagation. In the simplest case we find that single-mode propagation is best maintained by the application of time-dependent acceleration force with the temporal profile of a Blackmann pulse. We also assess the impact of classical noise on the acceleration process.
Resumo:
Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.
Resumo:
The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems.
Resumo:
Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.
Resumo:
We generalize the standard linear-response (Kubo) theory to obtain the conductivity of a system that is subject to a quantum measurement of the current. Our approach can be used to specifically elucidate how back-action inherent to quantum measurements affects electronic transport. To illustrate the utility of our general formalism, we calculate the frequency-dependent conductivity of graphene and discuss the effect of measurement-induced decoherence on its value in the dc limit. We are able to resolve an ambiguity related to the parametric dependence of the minimal conductivity.
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.
Resumo:
The purpose of this study is to describe the implementation of the Low Energy Electron Diffaction (LEED) technique in the Laboratory of Magnetic Nanostructures and Semiconductors of the Department of Theoretical and Experimental Physics of the Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil. During this work experimental apparatus were implemented for a complete LEED set-up. A new vacuum system was also set up. This was composed of a mechanical pump, turbomolecular pump and ionic pump for ultra-high vacuum and their respective pressure measurement sensors (Pirani gauge for low vacuum measures and the wide range gauge -WRG); ion cannon maintenance, which is basically mini-sputtering, whose function is sample cleaning; and set-up, maintenance and handling of the quadrupole mass spectrometer, whose main purpose is to investigate gas contamination inside the ultra-high vacuum chamber. It should be pointed out that the main contribution of this Master's thesis was the set-up of the sample heating system; that is, a new sample holder. In addition to the function of sample holder and heater, it was necessary to implement the function of sustaining the ultra-high vacuum environment. This set of actions is essential for the complete functioning of the LEED technique
Resumo:
n this master s dissertation a Kerr Magneto Optic s magnetometer effect was set up to do characterization of samples type films fine and ultra thin, these samples will be grown after the implementation of the sputtering technique at the magnetism laboratory of of this department. In this work a cooled electromagnet was also built the water and that it reaches close values to 10kOe with a gap of 22 mm including an area of uniform field of 25mm of diameter. The first chapter treats of the construction of this electromagnet from its dimensioning to the operation tests that involve measures of reached maximum field and temperature of the reels when operated during one hour. The second chapter is dedicated to the revision of the magnetism and the magnetization processes as well as it presents a theoretical base regarding the magnetic energies found in films and magnetic multilayer. In the sequence, the third chapter, is especially dedicated the description of the effects magneto opticians the effect kerr in the longitudinal, traverse and polar configurations, using for so much only the classic approach of the electromagnetism and the coefficients of Fresnel. Distinguished the two areas of observation of the effect regarding thickness of the film. The constructive aspects of the experimental apparatus as well as the details of its operation are explained at the room surrender, also presenting the preliminary results of the measures made in one serializes of permalloy films and concluding with the results of the characterization of the first films of iron and permalloy grown here at the theoretical and experimental physics department at UFRN
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB (R)/SINIULINK (R) models to structural VHDL-AMS descriptions. The tool developed, named (MSSV)-S-2, reads a SIMULINK (R) model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the SystemVision (TM). To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB (R)/SIMULINK (R). The VHDL-AMS code generated automatically by (MSSV)-S-2, (MATLAB (R)/SIMULINK (R) to SystemVision (TM)), was then simulated in the SystemVision (TM). The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.
Resumo:
This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves
Resumo:
We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.
Resumo:
We derive a closed-form analytic expression in momentum space for the asymptotic non-hydrogenic wavefunction of the quantum defect theory (QDT) due to Seaton and compare it with a widely used QDT-approximate wavefunction for the Rydberg states Li-3(2s), Mg-24(6s) and Rb-37(5s).
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation, we study the oscillation of the Bose-Einstein condensate (BEC) induced by a periodic variation in the atomic scattering length a. When the frequency of oscillation of a is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with a novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through a maximum and minimum. Such a growth and decay cycle of the amplitude may keep on repeating. Similar behaviour is also observed in a rotating BEC.
Resumo:
An algebraic reformulation of the Bohr-Sommerfeld (BS) quantization rule is suggested and applied to the study of bound states in one-dimensional quantum wells. The energies obtained with the present quantization rule are compared to those obtained with the usual BS and WKB quantization rules and with the exact solution of the Schrodinger equation. We find that, in diverse cases of physical interest in molecular physics, the present quantization rule not only yields a good approximation to the exact solution of the Schrodinger equation, but yields more precise energies than those obtained with the usual BS and/or WKB quantization rules. Among the examples considered numerically are the Poeschl-Teller potential and several anharmonic oscillator potentials. which simulate molecular vibrational spectra and the problem of an isolated quantum well structure subject to an external electric field.