967 resultados para toxic limit of selenium in pisciculture
Resumo:
What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sigma(c)-defining the adsorption-desorption transition-are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sigma(c) for the concave interfaces versus the Debye screening length 1/kappa and the extent of confinement a for these three interfaces for small kappa a values. For large kappa a the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/kappa. We also rationalize how sigma(c)(kappa) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption-the effect often hard to tackle theoretically-putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using the pure spinor formalism, a quantizable sigma model has been constructed for the superstring in an AdS(5) X S-5 background with manifest PSU(2,2 vertical bar 4) invariance. The PSU(2,2 vertical bar 4) metric g(AB) has both vector components gab and spinor components g, 3, and in the limit where the spinor components g, 3 are taken to infinity, the AdS5 X S5 sigma model reduces to the worldsheet action in a flat background. In this paper, we instead consider the limit where the vector components g(ab) are taken to infinity. In this limit, the AdS5 X S5 sigma model simplifies to a topological A-model constructed from fermionic N=2 superfields whose bosonic components transform like twistor variables. Just as d=3 Chern-Simons theory can be described by the open string sector of a topological A-model, the open string sector of this topological A-model describes d=4 N=4 super-Yang-Mills. These results might be useful for constructing a worldsheet proof of the Maldacena conjecture analogous to the Gopakumar-Vafa-Ooguri worldsheet proof of Chern-Simons/conifold duality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens that were fed daily with leaves of Canavalia ensiformis showed a high ant mortality, and a significant decrease in fungal garden volume, with complete depletion of nests after 11 weeks of treatment.
Resumo:
Contamination by butyltin compounds (BTs) has been reported in estuarine environments worldwide, with serious impacts on the biota of these areas. Considering that BTs can be degraded by varying environmental conditions such as incident light and salinity, the short-term variations in such factors may lead to inaccurate estimates of BTs concentrations in nature. Therefore, the present study aimed to evaluate the possibility that measurements of BTs in estuarine sediments are influenced by different sampling conditions, including period of the day (day or night), tidal zone (intertidal or subtidal), and tides (high or low). The study area is located on the Brazilian southeastern coast, Sao Vicente Estuary, at Pescadores Beach, where BT contamination was previously detected. Three replicate samples of surface sediment were collected randomly in each combination of period of the day, tidal zone, and tide condition, from three subareas along the beach, totaling 72 samples. BTs were analyzed by GC-PFPD using a tin filter and a VF-5 column, by means of a validated method. The concentrations of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) ranged from undetectable to 161 ng Sn g(-1) (d.w.). In most samples (71%), only MBT was quantifiable, whereas TBTs were measured in only 14, suggesting either an old contamination or rapid degradation processes. DBT was found in 27 samples, but could be quantified in only one. MBT concentrations did not differ significantly with time of day, zones, or tide conditions. DBT and TBT could not be compared under all these environmental conditions, because only a few samples were above the quantification limit. Pooled samples of TBT did not reveal any difference between day and night. These results indicated that, in assessing contamination by butyltin compounds, surface-sediment samples can be collected in any environmental conditions. However, the wide variation of BTs concentrations in the study area, i.e., over a very small geographic scale, illustrates the need for representative hierarchical and composite sampling designs that are compatible with the multiscalar temporal and spatial variability common to most marine systems. The use of such sampling designs will be necessary for future attempts to quantitatively evaluate and monitor the occurrence and impact of these compounds in nature
Resumo:
A bare graphite-polyurethane composite was evaluated in the tetracycline (TC) determination in natural water samples. Using differential pulse voltammetry (DPV), a linear response was observed in the range of 4.00-40.0 mu mol L-1 with limit of detection of 2.80 mu mol L-1, without the need of surface renewing between successive runs. During the tetracycline determination in water samples, recoveries between 92.6 and 100% were found. The results for TC determination in water samples after a pre-concentration stage agreed with spiked value at a 95% confidence level according to student t-test.
Resumo:
The class of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current potential curve encompasses a myriad of experimental examples. We present a comprehensive methodological analysis of the oscillation frequency of this class of systems and discuss its dependence on electrical and kinetic parameters. The analysis is developed from a skeleton ordinary differential equation model, and an equation for the oscillation frequency is obtained. Simulations are carried out for a model system, namely, the nickel electrodissolution, and the numerical results are confirmed by experimental data on this system. In addition, the treatment is further applied to the electro-oxidation of ethylene glycol where unusually large oscillation frequencies have been reported. Despite the distinct chemistry underlying the oscillatory dynamics of these systems, a very good agreement between experiments and theoretical predictions is observed. The application of the developed theory is suggested as an important step for primary kinetic characterization.
Resumo:
Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.
Resumo:
Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We studied the low energy motion of particles in the general covariant. version of Horava-Lifshitz gravity proposed by Horava and Melby-Thompson. Using a scalar field coupled to gravity according to the minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write an effective relativistic metric for a general solution. As a result, we discovered that the equivalence principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally, we analyzed the motion on the spherical symmetric solution proposed by Horava and Melby-Thompson, where we could find its effective line element and compute spin-0 geodesics. Using standard methods we have shown that such an effective metric cannot reproduce Newton's gravity law even in the weak gravitational field approximation. (C) 2011 Elsevier B.V All rights reserved.
Resumo:
Lipid peroxidation (LPO) has been associated with periodontal disease, and the evaluation of malondialdehyde (MDA) in the gingival crevicular fluid (GCF), an inflammatory exudate from the surrounding tissue of the periodontium, may be useful to clarify the role of LPO in the pathogenesis of periodontal disease. We describe the validation of a method to measure MDA in the GCF using high-performance liquid chromatography. MDA calibration curves were prepared with phosphate-buffered solution spiked with increasing known concentrations of MDA. Healthy and diseased GCF samples were collected from the same patient to avoid interindividual variability. MDA response was linear in the range measured, and excellent agreement was observed between added and detected concentrations of MDA. Samples' intra- and interday coefficients of variation were below 6.3% and 12.4%, respectively. The limit of quantitation (signal/noise = 5) was 0.03 mu M. When the validated method was applied to the GCF, excellent agreement was observed in the MDA quantitation from healthy and diseased sites, and diseased sites presented more MDA than healthy sites (P < 0.05). In this study, a validated method for MDA quantitation in GCF was established with satisfactory sensitivity, precision, and accuracy. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.