964 resultados para total amino acids
Resumo:
Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.
Resumo:
Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.
Resumo:
The germ fraction with pericarp (bran) is generated in the industrial processing of corn kernel, and it is used for oil extraction and animal feed. This study evaluated the nutritional and protein quality of this fraction in relation to whole corn. The proximate composition, mineral contents, and amino acid profile of the germ fraction with pericarp and of whole corn were determined. A 4-week experiment was conducted using 36 weanling male Wistar rats, and three 10%-protein diets (reference, germ with 15% lipids and casein with 15% lipids), two 6%-protein diets (whole corn and casein), and a protein-free diet were prepared. The germ showed higher contents of proteins, lipids, dietary fiber (27.8 g.100 g-1), ash, minerals (Fe and Zn- approximately 5 mg.100 g-1), and lysine (57.2 mg.g-1 protein) than those of corn. The germ presented good quality protein (Relative Protein Efficiency Ratio-RPER = 80%; Protein Digestibility-Corrected Amino Acid Score-PDCAAS = 86%), higher than that of corn (RPER = 49%; PDCAAS = 60%). The corn germ fraction with pericarp is rich in dietary fiber, and it is a source of good quality protein as well as of iron and zinc, and its use as nutritive raw material is indicated in food products for human consumption.
Resumo:
The present study was focused on the analysis of agronomical, nutritional, physicochemical, and antioxidant properties of six genetically different quinoa (Chenopodium quinoa Willd) genotypes cultivated in three distinctive geographical zones of Chile. Ancovinto and Cancosa genotypes from the northern Altiplano (19 ºS), Cáhuil and Faro from the central region (34 ºS), and Regalona and Villarica from the southern region (39 ºS) are representative of high genetic differentiation among the pooled samples, in particular between Altiplano and the central-southern groups. A Common-Garden Assay at 30 ºS showed significant differences among seed origins in all morphometric parameters and also in yields. Altiplano genotypes had larger panicule length but no seed production. A significant influence of the different quinoa genotypes on chemical composition and functional properties was also observed. Protein concentration ranged from 11.13 to 16.18 g.100 g-1 d.m., while total dietary fiber content ranged from 8.07-12.08 g.100 g-1 d.m., and both were the highest in Villarrica ecotype. An adequate balance of essential amino acids was also observed. Sucrose was the predominant sugar in all genotypes. Antioxidant activity was high in all genotypes, and it was highest in Faro genotype (79.58% inhibition).
Resumo:
This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.
Resumo:
The acceptance of tung oil enriched diet and the incorporation of conjugated linolenic acid - CLnA into fillets of Genetically Improved Farmed Tilapia (GIFT) were investigated. The diet was well accepted, and after 10 days CLnA was incorporated into the fillets with a 1.02% content of total fatty acids (FA). In addition, biosynthesis of the conjugated linoleic acid isomers - CLA (0.31% of fillet total FA content) from CLnA, and the presence of alpha-linolenic acid - LNA (1.08% of fillet total FA content), eicosapentaenoic acid - EPA (2.85% of fillet total FA content) and docosahexaenoic acid - DHA (3.08% of fillet total FA content) were observed. Therefore, the consumption of this fish can increase the intake of different FA (CLnA, CLA, LNA, EPA and DHA), which play an important role in human metabolism.
Resumo:
This study aimed to investigate the nutritional quality and bioactive potential of partially defatted baru (Dipteryx alataVog.) almond flour (BAF). The flour’s proximate and mineral compositions, total phenolic, tocopherols and carotenoids contents, antioxidant capacity, trypsin inhibitor and amino acid analyses were performed. An experiment was conducted with 24 male Wistar rats in order to evaluate the flour’s protein quality. BAF has high protein, fiber and mineral contents (iron, zinc, magnesium and copper), and it is a source of calcium. BAF presented relevant amounts of total phenolics (625 mg/100g) and good antioxidant capacity (130 µmol/Trolox eq). Autoclaved BAF showed essential amino acids profile, digestibility and protein quality better than in natura BAF. Autoclaved BAF might be used for human consumption as a source of quality protein and bioactive compounds, in healthy diets and processed foods.
Resumo:
Melanin extracted from Auricularia auricula fruiting bodies (AAFB) was examined by element analyzer, amino acid analyzer, inductively coupled plasma-optical emission spectrometry. Elemental composition analysis revealed that main component of AAFB melanin was pheomelanin. Amino acid analysis showed that 16 amino acids were found in AAFB melanin and total amino acid content was 321. 63 mg/g. There were 13 detectable metal elements in AAFB melanin, which was rich in Ca, Fe, Cu and Zn. In addition, AAFB melanin exhibited stronger scavenging activities on 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical, superoxide radical and hydroxyl radical with IC50 values of 0.18, 0.59 and 0.34 mg/mL, respectively. These results indicated that AAFB melanin might be potentially used as a natural antioxidant.
Resumo:
Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22). The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.
Resumo:
Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils.
Resumo:
y+LAT1 is a transmembrane protein that, together with the 4F2hc cell surface antigen, forms a transporter for cationic amino acids in the basolateral plasma membrane of epithelial cells. It is mainly expressed in the kidney and small intestine, and to a lesser extent in other tissues, such as the placenta and immunoactive cells. Mutations in y+LAT1 lead to a defect of the y+LAT1/4F2hc transporter, which impairs intestinal absorbance and renal reabsorbance of lysine, arginine and ornithine, causing lysinuric protein intolerance (LPI), a rare, recessively inherited aminoaciduria with severe multi-organ complications. This thesis examines the consequences of the LPI-causing mutations on two levels, the transporter structure and the Finnish patients’ gene expression profiles. Using fluorescence resonance energy transfer (FRET) confocal microscopy, optimised for this work, the subunit dimerisation was discovered to be a primary phenomenon occurring regardless of mutations in y+LAT1. In flow cytometric and confocal microscopic FRET analyses, the y+LAT1 molecules exhibit a strong tendency for homodimerisation both in the presence and absence of 4F2hc, suggesting a heterotetramer for the transporter’s functional form. Gene expression analysis of the Finnish patients, clinically variable but homogenic for the LPI-causing mutation in SLC7A7, revealed 926 differentially-expressed genes and a disturbance of the amino acid homeostasis affecting several transporters. However, despite the expression changes in individual patients, no overall compensatory effect of y+LAT2, the sister y+L transporter, was detected. The functional annotations of the altered genes included biological processes such as inflammatory response, immune system processes and apoptosis, indicating a strong immunological involvement for LPI.
Resumo:
Gliricidia sepium is a drought-tolerant species, easily multiplied by seeds, and has been exploited by farmers as a source of forage in the semi-arid region of northeast Brazil. The objective of the present study was to evaluate the effect of seed storage on the mobilization of reserves during imbibition of "Gliricidia" seeds. Freshly-harvested seeds were packed in kraft paper bags and stored for three and six months in the laboratory under ambient conditions (25 º C ± 3 T and 75% ± 3 RH). Cotyledons were isolated from imbibed seeds and macerated for the extraction and quantification of total soluble sugars, reducing sugars, sucrose and starch, as well as of proteins, amino acids and for amylase activity. Storage under these conditions resulted in an increase in seed water content although germination remained at relatively high levels (86%). Seed macromolecule levels showed significant variation with the storage period and imbibition and these variations were associated with a loss in seed viability due to inadequate storage conditions.
Resumo:
Phascolomyces articulosus genomic DNA was isolated from 48 h old hyphae and was used for amplification of a chitin synthase fragment by the polymerase chain reaction method. The primers used in the amplification corresponded to two widely conserved amino acid regions found in chitin synthases of many fimgi. Amphfication resulted in four bands (820, 900, 1000 and 1500 bp, approximately) as visualized in a 1.2% agarose gel. The lowest band (820 bp) was selected as a candidate for chitin synthase because most amplified regions from other fimgi so far exhibited similar sizes (600-750 bp). The selected fragment was extracted from the gel and cloned in the Hinc n site of pUC19. The derived plasmid and insert were designated ^\5C\9'PaCHS and PaCHS respectively. The plasmid pUC19-PaC/fS was digested by several restriction enzymes and was found to contain BamHl and HincU sites. Sequencing of PaCHS revealed two intron sequences and a total open reading frame of 200 amino acids. The derived polypeptide was compared with other related sequences from the EMBL database (Heidelberg, Germany) and was matched to 36 other fiilly or partially sequenced fimgal chitin synthase genes. The closest resemblance was with two genes (74.5% and 73.1% identity) from Rhizopus oligosporus. Southern hybridization with the cloned fragment as a probe to the PCR reaction showed a strong signal at the fragment selected for cloning and weaker signals at the other two fragments. Southern hybridization with partially digested Phascolomyces articulosus genomic DNA showed a single band. The amino acid sequence was compared with sequences from other chitin synthase gene classes using the CLUSTALW program. The chitin synthase fragment from Phascolomyces articulosus was initially grouped in class n along with chitin synthase fragments from Rhizopus oligosporus and Phycomyces blakesleeanus which also belong to the same class, Zygomycetes. Bootstrap analysis using the neighbor-joining method available by CLUSTALW verified such classification. Comparison of PaCHS revealed conservation of intron positions that are characteristic of chitin synthase gene fragments of zygomycetous fungi.
Resumo:
The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.
Resumo:
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel.