967 resultados para text-to-grammar
Resumo:
Text classification, information filtering, semi-supervised learning, quality control
Resumo:
v.25:no.1(1937)
Resumo:
2
Resumo:
3
Resumo:
Abstract :This article examines the interplay of text and image in The Fairy Tales of Charles Perrault (1977), translated by Angela Carter and illustrated by Martin Ware, as a form of intersemiotic dialogue that sheds new light on Carter's work. It argues that Ware's highly original artwork based on the translation not only calls into question the association of fairy tales with children's literature (which still characterizes Carter's translation), but also captures an essential if heretofore neglected aspect of Carter's creative process, namely the dynamics between translating, illustrating and rewriting classic tales. Several elements from Ware's illustrations are indeed taken up and elaborated on in The Bloody Chamber and Other Stories (1979), the collection of "stories about fairy stories" that made Carter famous. These include visual details and strategies that she transposed to the realm of writing, giving rise to reflections on the relation between visuality and textuality.RésuméCet article considère l'interaction du texte et de l'image dans les contes de Perrault traduits par Angela Carter et illustrés par Martin Ware (The Fairy Tales of Charles Perrault, 1977) comme une forme de dialogue intersémiotique particulièrement productif. Il démontre que les illustrations originales de Ware ne mettent pas seulement en question l'assimilation des contes à la littérature de jeunesse (qui est encore la perspective adoptée par la traductrice dans ce livre), mais permettent aussi de saisir un aspect essentiel bien que jusque là ignoré du procession de création dans l'oeuvre de Carter, à savoir la dynamique qui lie la traduction, l'illustration et la réécriture des contes classiques. Plusieurs éléments des illustrations de Ware sont ainsi repris et élaborés dans The Bloody Chamber and Other Stories (1979), la collection de "stories about fairy stories" qui rendit Carter célèbre. La transposition de détails et de stratégies visuelles dans l'écriture donnent ainsi l'occasion de réflexions sur les rapports entre la visualité et la textualité.
Resumo:
Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.
Resumo:
Transcript (spelling and grammar retained): York 6th Sepber [September] 1814 Sir I will thank your for the Rolls and Returns of the Pickering Company due on the 1st instance that I may Make up mine to be returned to the Adjutant General – I have the honor to be Sir Your Most Obed [Obedient] W Chewett Lt Col 3rd Reg Yk [York] Militia
Resumo:
Transcript (spelling and grammar retained): “Col Proctor Sir I hope your goodness will excuse the Liberty I have taken of Enclosing a Letter for my nephew Mr. Hailes to your care, and begging the favor of you to forward it to him, - not knowing myself at what Post he is – With Great Respect I am Sir Your Most Obed Serv David Todd”
Resumo:
UANL
Resumo:
UANL
Resumo:
This short 7-minute video shows two methods which can be used to highlight selected words or phrases on a PowerPoint slide.
Resumo:
Las formas de evaluación basadas en el uso de tests no pueden identificar muchos errores conceptuales de los estudiantes. Esta investigación tiene como objetivo facilitar un nuevo procedimiento capaz de generar los modelos conceptuales de los estudiantes de forma automática a partir de respuestas en texto libre.. Este trabajo se organiza en tres apartados. En primer lugar, se procede a la revisión del estado de la cuestión. A continuación se describen el procedimiento para generar automáticamente los modelos conceptuales de los estudiantes y los sistemas que implementan dicho procedimiento. Por último se ofrecen: una explicación de los experimentos realizados y sus resultados, las conclusiones obtenidas y las líneas de trabajo futuro. Además se proporciona información para aplicar el procedimiento en otro idioma y/o área de conocimiento.. Se propone un procedimiento para generar automáticamente modelos conceptuales de cada estudiante y de una clase a partir de las respuestas facilitadas al sistema de evaluación automático y adaptativo. Estos sistemas son la evolución de los actuales de evaluación de respuestas en texto libre, que evalúan respuestas en texto libre automáticamente y de forma adaptada al modelo de cada estudiante..