998 resultados para simultaneous graphite furnace atomic absorption spectrometry
Resumo:
A flow cell assembled on the original geometry of a graphite tube to achieve permanent chemical modifier is proposed. The graphite tube operates as the working electrode. A stainless steel tube, positioned downstream from the working electrode, was used as the auxiliary electrode. The potential value applied on the graphite electrode was measured against a micro reference electrode (Ag/AgCl) inserted into the auxiliary electrode. Palladium solutions in acetate buffer (100 mmol L-1, pH = 4.8), flowing at 0.5 mL min-1 for 60 min was used to perform the electrochemical modification. A mercury solution (1 ng) was used to evaluate the performance of the permanent palladium modifier.
Resumo:
The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry) is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.
Resumo:
A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
The atomization behavior of Au, Ag, Bi, Cd, Pb, and Sn from pyrolitic graphite coating (L'vov platform) with the use Pd and Mg solutions, and zirconium coated platform with the analytes in nitric acid 0.2% v/v and in ethanol was investigated. In ethanol medium, the sensitivity gain was three-fold for Bi and Cd using Zr as modifier. Without modifier, the ethanol medium is appropriate only for Au and Cd. In nitric acid medium, the Zr coated platform elevates sensitivity at least two-fold for Bi and Cd. The method was applied to the determination of Ag, Au and Bi of certified steel samples, after on-line preconcentration, sorption on a minicolumn filled with C-18 bonded to silica gel and elution with ethanol. The concentrations obtained agreed with the recommended values.
Resumo:
The use of an internal standard (IS) in ET AAS can be considered a new trend after the commercial introduction of a simultaneous spectrometer. The evaluation of experimental data to choose the most appropriate IS can be done by comparing correlation graphs. They were used to verify the resemblance among the simultaneous measurements obtained for the analyte(s) and the IS by inductively coupled plasma optical emission spectrometry (ICPOES). The judicious selection of IS by using correlation graphs for determinations by ET AAS can be exploited to improve the precision and accuracy of the analytical results. Therefore, a new approach for studying the use of IS in ET AAS is presented.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 ºC, respectively, using 15 µg de Mg(NO3)2 as chemical modifier. Characteristics mass of 14, 6 and 220 ρg and detection limits of the method of 0.07, 0.38 and 0.75 µg L-1 were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 µg L-1 was observed for Cr and V, respectively, and not detectable levels for Ni.
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.
Resumo:
Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry (ICP OES) are widely used in academic institutions and laboratories for quality control to analyze inorganic elements in samples. However, these techniques have been observed to underperform in sample nebulization processes. Most of the samples processed through nebulization system are discarded, producing large volumes of waste. This study reports the treatment and reuse of the waste produced from ICP OES technique in a laboratory of analytical research at the Universidade Federal do Ceará, Brazil. The treatment of the waste was performed by the precipitation of elements using (NH4)2CO3. Subsequently, the supernatant solution can be discarded in accordance with CONAMA 430/2011. The precipitate produced from the treatment of residues can be reused as a potential sample in undergraduate qualitative analytical chemistry lab classes, providing students the opportunity to test a real sample.
Resumo:
Arsenic, bismuth, germanium, antimony and tin were simultaneously determined by continuous hydride generation and inductively coupled plasma-atomic emission spectrometry . I Hydrides were introduced into four different types of gas-liquid separators. Two of the gas-liquid separators were available in-house. A third was developed for this project and a fourth was based on a design used by CET AC. The best signal intensity was achieved by the type II frit-based gas-liquid separator, but the modified Cetac design gave promise for the future, due to low relative standard deviation. A method was developed for the determination of arsenic, bismuth, antimony and tin in low-alloy steels. Four standard reference materials from NIST were dissolved in 10 mL aqua regia without heat. Good agreement was obtained between experimental values and certified values for arsenic, bismuth, antimony and tin. The method was developed to provide the analyst with the opportunity to determine the analytes by using simple aqueous standards to prepare calibration lines. Within the limits of the samples analyzed, the method developed is independent of matrix.
Resumo:
In this work Cu and Fe bioavailability in cashew nuts was evaluated using in vitro method. Extractions with simulated gastric and intestinal fluids and dialysis procedures were applied for this purpose. The proteins separation and quantification were performed by size exclusion chromatography (SEC) coupled on-line to ultra-violet (UV) and off-line to simultaneous multielement atomic absorption spectrometry (SIMAAS). The SEC-UV and SIMAAS profiles of the protein fractions obtained by alkaline extraction (NaOH) and precipitation with HCl indicated the presence of high and low molecular weight species in the range between >75 kDa and 9.3 kDa. Almost 83% of Cu and 78% of Fe were extracted during cashew nut digestion and 90% of both elements were dialyzed. With these results it is possible to assume that 75% of Cu and 70% of Fe present in cashew nut could be bioavailable. The SEC-UV and SIMAAS chromatographic profiles obtained after in vitro gastrointestinal digestion reveal that Cu and Fe not dialyzed can be associated to a compound of 9.2 kDa. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a simple, fast, and sensitive method to determine zinc in samples of feces and fish feed by electrothermal atomic absorption spectrometry through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The procedure is based on the injection of 10 mu L of an acidified aqueous solution containing 0.50% w/v of feces or feed and 0.50% v/v HNO(3) into graphite tube. The limits of detection and quantification calculated for 20 readings of the blank of the standard slurries (0.50% w/v of feces or feed devoid of zinc) were 0.04 and 0.13 mu g L(-1) for the standard feces slurries and 0.05 and 0.17 mu g L(-1) for the standard feed slurries. The proposed method was applied in studies of digestibility of zinc in different fish feeds, and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven.
Resumo:
Solid-state M-L compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and L is folate (C19H17N7O6), have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray powder diffractometry, infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) were used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the composition, dehydration, thermal stability and thermal decomposition. © 2013 Akadémiai Kiadó, Budapest, Hungary.