974 resultados para resonant push-pull
Resumo:
Non-cognitive skills have caught the attention of current education policy writers in Canada. Within the last 10 years, almost every province has produced a document including the importance of supporting non-cognitive skills in K-12 students in the classroom. Although often called different names (such as learning skills, cross curricular competencies, and 20th Century Skills) and occasionally viewed through different lenses (such as emotional intelligence skills, character skills, and work habits), what unifies non-cognitive skills within the policy documents is the claim that students that are strong in these skills are more successful in academic achievement and are more successful in post-secondary endeavors. Though the interest from policy-makers and educators is clear, there are still many questions about non-cognitive skills that have yet to be answered. These include: What skills are the most important for teacher’s to support in the classroom? What are these skills’ exact contributions to student success? How can teachers best support these skills? Are there currently reliable and valid measures of these skills? These are very important questions worth answering if Canadian teachers are expected to support non-cognitive skills in their classrooms with an already burdened workload. As well, it can begin to untangle the plethora of research that exists within the non-cognitive realm. Without a critical look at the current literature, it is impossible to ensure that these policies are effective in Canadian classrooms, and to see an alignment between research and policy. Upon analysis of Canadian curriculum, five non-cognitive skills were found to be the most prevalent among many of the provinces: Self-Regulation, Collaboration, Initiative, Responsibility and Creativity. The available research literature was then examined to determine the utility of teaching these skills in the classroom (can students improve on these skills, do these skills impact other aspects of students’ lives, and are there methods to validly and reliably assess these skills). It was found that Self-Regulation and Initiative had the strongest basis for being implemented in the classroom. On the other hand, Creativity still requires a lot more justification in terms of its impact on students’ lives and ability to assess in the classroom.
Resumo:
Mallorca, the largest of the Balearic Islands, is a well-known summer holidays destination; an ideal place to relax and enjoy the sun and the sea. That tourist gaze reflected on postcards results from advertising campaigns, where cinema played an important role with documentaries and fiction films. The origins of that iconography started in the decades of the 1920’s and 1930’s, reflecting the so-called myth of the “island of calm”. On the other hand, the films of the 1950’s and 1960’s created new stereotypes related to the mass tourism boom. Busy beaches and the white bodies of tourists replaced white sandy beaches, mountains and landscapes shown up in the movies of the early decades of the 20th century. Besides, hotels and nightclubs also replaced monuments, rural landscapes and folk exhibitions. These tourist images mirror the social and spatial transformations of Mallorca, under standardization processes like other seaside mass tourist destinations. The identity was rebuilt on the foundations of "modernity". Although "balearization" has not ceased, nowadays filmmaking about Mallorca is advertising again a stereotype close to that one of the 1920s and 1930s, glorifying the myth of the "island of calm". This singular identity makes the island more profitable for capital that searches socio-spatial differentiation in post-fordist times.
Resumo:
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.
Resumo:
Mostly developed since the Industrial Revolution, the automation of systems and equipment around us is responsible for a technological progress and economic growth without precedents, but also by a relentless energy dependence. Currently, fossil fuels still tend to come as the main energy source, even in developed countries, due to the ease in its extraction and the mastery of the technology needed for its use. However, the perception of its ending availability, as well as the environmental impact of this practice has led to a growing energy production originated from renewable sources. Easy maintenance, coupled with the fact that they are virtually inexhaustible, makes the solar and wind energy very promising solutions. In this context, this work proposes to facilitate energy production from these sources. To this end, in this work the power inverter is studied, which is an equipment responsible for converting DC power available by solar or wind power in traditional AC power. Then it is discussed and designed a new architecture which, in addition to achieve a high energy e - ciency, has also the ability to adapt to the type of conversion desired by the user, namely if he wants to sell electricity to the power grid, be independent of it or bet on a self consumption system. In order to achieve the promised energy e ciency, the projected inverter uses a resonant DC-DC converter, whose architecture signi cantly decreases the energy dissipated in the conversion, allowing a higher power density. The adaptability of the equipment is provided by an adaptive control algorithm, responsible for assessing its behavior on every iteration and making the necessary changes to achieve maximum stability throughout the process. To evaluate the functioning of the proposed architecture, a simulation is presented using the PLECS simulation software.
Resumo:
A locational duality in port-related distribution activities is emerging. In some regions, distribution activities have moved from ports to inland locations, driven in part by ‘push factors’ such as port congestion and scarcity of land for container handling activities, or by ‘pull factors’ such as the growth of intermodal corridors, the influence of inland terminals and the changing economic geography in the hinterland. In other regions, ports retain their traditional role as centres of distribution and warehousing activity. More recently, the focus on ‘port-centric logistics’ is indicative that some regions are refocusing on ports as potential locations for large distribution centres. The result has been a growing competition, but also complementarity, between ports and inland locations concerning the location of distribution activities, driven not only by market forces but also by institutional settings and the governance relations between the actors involved. This report provides an overview of regional differences across the world in order to develop a framework identifying for which type of distribution activities ports are suitable locations and which activities are best suited to the hinterland, taking into account geographical, economic and logistics settings. Empirical evidence is derived from a variety of regions in Europe, North America, South America, Southern Africa and Asia.
Resumo:
We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactions, enables the five-body resonant recombination rate to be calculated and measured. The position of the new observed recombination feature agrees with a recent theoretical prediction and supports the prediction of a family of universal cluster states at negative a that are tied to an Efimov trimer.
Resumo:
Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the "sum-over-trips" approach [Abbott, L.F., Fahri, E., Gutmann, S.: The path integral for dendritic trees. Biological Cybernetics 66, 49--60 (1991)]. To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an $I_{h}$ current contributes to a voltage overshoot at the soma.
Resumo:
Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.
Resumo:
Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.
Resumo:
Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.
Resumo:
In the last sixty years a steadily maintained process of convergence towards the Castilian national standard has been occurring in Southern Spain affecting urban middle-class speakers’ varieties, particularly phonology and lexis. As a consequence, unmarked features characterising innovative southern pronunciation have become less frequent and, at the same time, certain standard marked features have been adapted to the southern phonemic inventory. Then, urban middle-class varieties have progressively been stretching out the distance separating them from working-class and rural varieties, and bringing them closer to central Castilian varieties. Intermediate, yet incipient koineised varieties have been described including also transitional Murcia and Extremadura dialects (Hernández & Villena 2009, Villena, Vida & von Essen 2015). (1) Some of the standard phonologically marked features have spread out among southern speakers exclusively based on their mainstream social prestige and producing not only changes in obstruent phoneme inventory –i.e. acquisition of /s/ vs. /θ/ contrast, but also standstill and even reversion of old consonant push- or pull-chain shifts –e.g. /h/ or /d/ fortition, affricate /ʧ/, etc. as well as traditional lexis shift (Villena et al. 2016). Internal (grammar and word frequency) and external (stratification, network and style) factors constraining those features follow similar patterns in the Andalusian speech communities analysed so far (Granada, Malaga) but when we zoom in on central varieties, which are closer to the national standard and then more conservative, differences in frequency increase and conflict sites emerge. (2) Unmarked ‘natural’ phonological features characterising southern dialects, particularly deletion of syllable-final consonant, do not keep pace with this trend of convergence towards the standard. Thus a combination of southern innovative syllable-final and standard conservative onset-consonant features coexist. (3). The main idea is that this intermediate variety is formed through changes suggesting that Andalusian speakers look for the best way of accepting marked prestige features without altering coherence within their inventory. Either reorganisation of the innovative phonemic system in such a way that it may include Castilian and standard /s/ vs. /θ/ contrast or re-syllabification of aspirated /s/ before dental stop are excellent examples of how and why linguistic features are able to integrate intermediate varieties between the dialect-standard continuum.
Resumo:
Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.
Resumo:
info:eu-repo/semantics/publishedVersion