954 resultados para pooled estimates
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
We report here top-down emissions estimates for an African megacity. A boundary layer circumnavigation of Lagos, Nigeria was completed using the FAAM BAe146 aircraft as part of the AMMA project. These observations together with an inferred boundary layer height allow the flux of pollutants to be calculated. Extrapolation gives annual emissions for CO, NOx, and VOCs of 1.44 Tg yr(-1), 0.03 Tg yr(-1) and 0.37 Tg yr(-1) respectively with uncertainties of (+250)/(-60%). These inferred emissions are consistent with bottom-up estimates for other developing megacities and are attributed to the evaporation of fuels, mobile combustion and natural gas emissions.
Determination of digesta flow entering the omasal canal of dairy cows using different marker systems
Resumo:
Four studies were conducted to compare the effect of four indigestible markers (LiCoEDTA, Yb-acetate, Cr-mordanted straw and indigestible neutral-detergent fibre (INDF)) and three marker systems on the flow of digesta entering the omasal canal of lactating dairy cows. Samples of digesta aspirated from the omasal canal were pooled and separated using filtration and high-speed centrifugation into three fractions defined as the liquid phase, small particulate and large particulate matter. Co was primarily associated with the liquid phase, Yb was concentrated in small particulate matter, whilst Cr and INDF were associated with large particles. Digesta flow was calculated based on single markers or using the reconstitution system based on combinations of two (Co + Yb, Co + Cr and Co + INDF) or three markers (Co + Yb + Cr and Co + Yb + INDF). Use of single markers resulted in large differences between estimates of organic matter (OM) flow entering the omasal canal suggesting that samples were not representative of true digesta. Digesta appeared to consist of at least three phases that tended to separate during sampling. OM was concentrated in particulate matter, whilst the liquid phase consisted mainly of volatile fatty acids and inorganic matter. Yb was intimately associated with nitrogenous compounds, whereas Cr and INDF were concentrated in fibrous material. Current data indicated that marker systems based on Yb in combination with Cr or INDF are required for the accurate determination of OM, N and neutral-detergent fibre flow. In cases where the flow of water-soluble nutrients entering the omasal canal is also required, the marker system should also include Co.
Resumo:
Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD: Experiment 1) and in individuals with Williams syndrome (WS: Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.
Resumo:
Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1–2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
Ten projects constructed in Ghana between 2003 and 2010 are examined and analysed to ascertain the reliability of estimated costs provided for the projects. Cost estimates for five of the projects were calculated by consultants and cost estimates for the five remaining projects were calculated by contractors. Cost estimates prepared by contractors seemed to be closer to actual costs than estimates calculated by consultants. Projects estimated by consultants experienced an average cost overrun of 40% and time overrun of 62% whereas projects priced by contractors experienced an average cost overrun of 6% and time overrun of 41%. It seemed that contractors had a better understanding of the actual construction processes and a clearer expectation of the needs of the client hence an ability to calculate estimates that were closer to reality. Construction clients in Ghana should rely on contractors for more realistic cost estimates as estimates by consultants may be inaccurate. Where consultants are employed, an allowance of up 40% should be added to the estimated costs as a margin for inaccuracy.
Resumo:
This study presents a systematic and quantitative analysis of the effect of inhomogeneous surface albedo on shortwave cloud absorption estimates. We used 3D radiative transfer modeling over a checkerboard surface albedo to calculate cloud absorption. We have found that accounting for surface heterogeneity enhances cloud absorption. However, the enhancement is not sufficient to explain the reported difference between measured and modeled cloud absorption.
The TAMORA algorithm: satellite rainfall estimates over West Africa using multi-spectral SEVIRI data
Resumo:
A multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security. Radar data were used to calibrate multi-channel SEVIRI data from MSG, and a probability of rainfall at several different rain-rates was established for each combination of SEVIRI radiances. Radar calibrations from both Europe (the SatPrecip algorithm) and Niger (TAMORA algorithm) were used. 10 day estimates were accumulated from SatPrecip and TAMORA and compared with kriged gauge data and TAMSAT satellite rainfall estimates over West Africa. SatPrecip was found to produce large overestimates for the region, probably because of its non-local calibration. TAMORA was negatively biased for areas of West Africa with relatively high rainfall, but its skill was comparable to TAMSAT for the low-rainfall region climatologically similar to its calibration area around Niamey. These results confirm the high importance of local calibration for satellite-derived rainfall estimates. As TAMORA shows no improvement in skill over TAMSAT for dekadal estimates, the extra cloud-microphysical information provided by multi-spectral data may not be useful in determining rainfall accumulations at a ten day timescale. Work is ongoing to determine whether it shows improved accuracy at shorter timescales.
Resumo:
We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.