868 resultados para physical effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the spin Hall effect in the kagome lattice with Rashba spin-orbit coupling. The conserved spin Hall conductance sigma(s)(xy) (see text) and its two components, i.e., the conventional term sigma(s0)(xy) and the spin-torque-dipole term sigma(s tau)(xy), are numerically calculated, which show a series of plateaus as a function of the electron Fermi energy epsilon(F). A consistent two-band analysis, as well as a Berry-phase interpretation, is also given. We show that these plateaus are a consequence of various Fermi-surface topologies when tuning epsilon(F). In particular, we predict that compared to the case with the Fermi surface encircling the Gamma point in the Brillouin zone, the amplitude of the spin Hall conductance with the Fermi surface encircling the K points is twice enhanced, which makes it highly meaningful in the future to systematically carry out studies of the K-valley spintronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the Aharonov-Bohm effect in the optical phenomena of single-wall carbon nanotubes (SWCN) and also their chirality dependence. Especially, we consider the natural optical activity as a proper observable and derive its general expression based on a comprehensive symmetry analysis, which reveals the interplay between the enclosed magnetic flux and the tubule chirality for arbitrary chiral SWCN. A quantitative result for this optical property is given by a gauge invariant tight-binding approximation calculation to stimulate experimental measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the pump effect induced by the level oscillation in a quantum dot with asymmetric constrictions. The curve of pumped current versus the frequency of level oscillation undulates at zero temperature. The oscillation of the pumped current can be smeared by increasing the temperature and the coupling strength between the quantum dot and the leads. Either the temperature increase or the coupling strength enhancement can lead to a positive or negative effect on the pumped current, depending on the parameters of the quantum dot system. A larger level-oscillation magnitude results in a larger pumped current, especially in the low-frequency case. An analytical expression of the pumped current is obtained in the regime far from adiabatic. A convenient physical picture based on our analytic result is proposed, with which we can explain all the features of the pumped current curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Special characteristics of very-small-aperture lasers are observed, including threshold current change, red shift of the spectral position, and short lifetime at low drive current. Physical mechanisms that underlie these special characteristics are analyzed: we find that optical feedback caused by a metal film and heat accumulation inside the laser diode lead to the special characteristics of VSALs, such as threshold current change, red shift of the spectral position, and short lifetime at low drive current, etc. Theoretical simulation is in good agreement with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the capacitance-voltage characteristics of an optically excited wide quantum well. Both self-consistent simulations and experimental results show the striking quantum contribution to the capacitance near zero bias which is ascribed to the swift decreasing of the overlap between the electron and hole wave functions in the well as the longitudinal field goes up. This quantum capacitance feature is regarded as an electrical manifestation of the quantum-confined Stark effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observe "ghost" islands formed on terraces during homoepitaxial nucleation of GaN. We attribute the ghost islands to intermediate nucleation states, which can be driven into "normal" islands by scanning tunneling microscopy. The formation of ghost islands is related to excess Ga atoms on the surface. The excess Ga also affect island number density: by increasing Ga coverage, the island density first decreases, reaching a minimum at about 1 monolayer (ML) Ga and then increases rapidly for coverages above 1 ML. This nonmonotonic behavior points to a surfactant effect of the Ga atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally. Such a barrier has been predicted by previous theories. From the deep-level transient spectroscopy (DLTS) measurements, we have obtained the electron and hole energy levels of quantum dots E-e(QD-->GaAs) = 0.13 eV and E-h(QD-->GaAs) = 0.09 eV relative to the bulk unstrained GaAs band edges E-c and E-v. DLTS measurements have also provided evidence to the existence of the capture barriers of quantum dots for electron E-eB = 0.30 eV and hole E-hB = 0.26 eV. The barriers can be explained by the apexes appearing in the interface between InAs and GaAs caused by strain. Combining the photoluminescence results, the band structures of InAs and GaAs have been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.