845 resultados para ordered metric-spaces
Resumo:
Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly.
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The measurability of the non-minimal coupling is discussed by considering the correction to the Newtonian static potential in the semiclassical approach. The coefficient of the gravitational Darwin term (GDT) gets redefined by the non-minimal torsion scalar couplings. Based on a similar analysis of the GDT in the effective field theory approach to non-minimal scalar, we conclude that for reasonable values of the couplings the correction is very small.
Resumo:
The teleparallel gravity theory, treated physically as a gauge theory of translations, naturally represents a particular case of the most general gauge-theoretic model based on the general affine group of spacetime. on the other hand, geometrically, the Weitzenbock spacetime of distant parallelism is a particular case of the general metric-affine spacetime manifold. These physical and geometrical facts offer a new approach to teleparallelism. We present a systematic treatment of teleparallel gravity within the framework of the metric-affine theory. The symmetries, conservation laws and the field equations are consistently derived, and the physical consequences are discussed in detail. We demonstrate that the so-called teleparallel GR-equivalent model has a number of attractive features which distinguishes it among the general teleparallel theories, although it has a consistency problem when dealing with spinning matter sources.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of AC/DC magnetic susceptibility and impedance measurements to detect oxygen depletion effects in La0.7Ca0.3MnO3 +/-delta and NiMn2O4+delta spinel-type compounds is reported. For the NiMn2O4, for which no Mn4+ was found, three superposed Debye relaxations were observed in the range 260-180 K. Otherwise, in La0.7Ca0.3MnO3, the argon annealed has contributed to a decrease in T-C, but the amount of Mn4+ is still too high to allow the observation of a relaxation in this frequency window. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We show that the Hardy space H¹ anal (R2+ x R2+) can be identified with the class of functions f such that f and all its double and partial Hubert transforms Hk f belong to L¹ (R2). A basic tool used in the proof is the bisubharmonicity of |F|q, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.
Resumo:
We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value