864 resultados para modularised computing unit
Resumo:
The main objective of this master’s thesis is to provide a comprehensive view to cloud computing and SaaS, and analyze how well CADM, a unit of Capgemini Finland Ltd., would fit to the cloud-based SaaS business. Another objective for this thesis is to investigate how public clouds would fit for CADM as a delivery model, if they would provide SaaS applications to their customers. This master’s thesis is executed by investigating characteristics of cloud computing and SaaS especially from application provider point of view. This is done by exploring what kinds of researches and analysis there have been done regarding these two phenomena during past few years. Then CADM’s current business model and operations are analyzed from SaaS’s and public cloud’s perspective. This analyzing part is conducted by using SWOT analysis which is widely used analytical tool when observing company’s strategic position and when figuring out possibilities how to improve company’s operations. The conducted analysis and observations reveals that CADM should pursue SaaS business as it could provide remarkable advantages and strengthen their position in current markets. However, pure SaaS model would not be the optimal solution for CADM because they do not have own product which could be transformed to SaaS model, and they lack of Infrastructure Management ability. Also public cloud would not be the most suitable delivery model for them if providing SaaS services. The main observation of this thesis is that CADM should adopt the SaaS model via Capgemini Immediate offering.
Resumo:
Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.
Resumo:
Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.
Resumo:
In this doctoral thesis, a power conversion unit for a 10 kWsolid oxide fuel cell is modeled, and a suitable control system is designed. The need for research was identified based on an observation that there was no information available about the characteristics of the solid oxide fuel cell from the perspective of power electronics and the control system, and suitable control methods had not previously been studied in the literature. In addition, because of the digital implementation of the control system, the inherent characteristics of the digital system had to be taken into account in the characteristics of the solid oxide fuel cell (SOFC). The characteristics of the solid oxide fuel cell as well the methods for the modeling and control of the DC/DC converter and the grid converter are studied by a literature survey. Based on the survey, the characteristics of the SOFC as an electrical power source are identified, and a solution to the interfacing of the SOFC in distributed generation is proposed. A mathematical model of the power conversion unit is provided, and the control design for the DC/DC converter and the grid converter is made based on the proposed interfacing solution. The limit cycling phenomenon is identified as a source of low-frequency current ripple, which is found to be insignificant when connected to a grid-tied converter. A method to mitigate a second harmonic originating from the grid interface is proposed, and practical considerations of the operation with the solid oxide fuel cell plant are presented. At the theoretical level, the thesis discusses and summarizes the methods to successfully derive a model for a DC/DC converter, a grid converter, and a power conversion unit. The results of this doctoral thesis can also be used in other applications, and the models and methods can be adopted to similar applications such as photovoltaic systems. When comparing the results with the objectives of the doctoral thesis, we may conclude that the objectives set for the work are met. In this doctoral thesis, theoretical and practical guidelines are presented for the successful control design to connect a SOFC-based distributed generation plant to the utility grid.
Resumo:
The purpose of this thesis is to examine what the normative, effective social Intranet solution is for Tellabs Mobile Routing business unit in terms of sharing knowledge more openly and effectively, fostering innovation, and improving team spirit and positive employee experience. Additionally, these aspects are researched from the intra- and inter-organizational points of view. The research is based on previous literature and empirical interviews. Based on these two items, an eight-fold recommendation proposal was created to change the current Intranet to become an effective social Intranet.
Resumo:
Valmistustekniikoiden kehittyessä IC-piireille saadaan mahtumaan yhä enemmän transistoreja. Monimutkaisemmat piirit mahdollistavat suurempien laskutoimitusmäärien suorittamisen aikayksikössä. Piirien aktiivisuuden lisääntyessä myös niiden energiankulutus lisääntyy, ja tämä puolestaan lisää piirin lämmöntuotantoa. Liiallinen lämpö rajoittaa piirien toimintaa. Tämän takia tarvitaan tekniikoita, joilla piirien energiankulutusta saadaan pienennettyä. Uudeksi tutkimuskohteeksi ovat tulleet pienet laitteet, jotka seuraavat esimerkiksi ihmiskehon toimintaa, rakennuksia tai siltoja. Tällaisten laitteiden on oltava energiankulutukseltaan pieniä, jotta ne voivat toimia pitkiä aikoja ilman akkujen lataamista. Near-Threshold Computing on tekniikka, jolla pyritään pienentämään integroitujen piirien energiankulutusta. Periaatteena on käyttää piireillä pienempää käyttöjännitettä kuin piirivalmistaja on niille alunperin suunnitellut. Tämä hidastaa ja haittaa piirin toimintaa. Jos kuitenkin laitteen toiminnassa pystyään hyväksymään huonompi laskentateho ja pienentynyt toimintavarmuus, voidaan saavuttaa säästöä energiankulutuksessa. Tässä diplomityössä tarkastellaan Near-Threshold Computing -tekniikkaa eri näkökulmista: aluksi perustuen kirjallisuudesta löytyviin aikaisempiin tutkimuksiin, ja myöhemmin tutkimalla Near-Threshold Computing -tekniikan soveltamista kahden tapaustutkimuksen kautta. Tapaustutkimuksissa tarkastellaan FO4-invertteriä sekä 6T SRAM -solua piirisimulaatioiden avulla. Näiden komponenttien käyttäytymisen Near-Threshold Computing –jännitteillä voidaan tulkita antavan kattavan kuvan suuresta osasta tavanomaisen IC-piirin pinta-alaa ja energiankulusta. Tapaustutkimuksissa käytetään 130 nm teknologiaa, ja niissä mallinnetaan todellisia piirivalmistusprosessin tuotteita ajamalla useita Monte Carlo -simulaatioita. Tämä valmistuskustannuksiltaan huokea teknologia yhdistettynä Near-Threshold Computing -tekniikkaan mahdollistaa matalan energiankulutuksen piirien valmistaminen järkevään hintaan. Tämän diplomityön tulokset näyttävät, että Near-Threshold Computing pienentää piirien energiankulutusta merkittävästi. Toisaalta, piirien nopeus heikkenee, ja yleisesti käytetty 6T SRAM -muistisolu muuttuu epäluotettavaksi. Pidemmät polut logiikkapiireissä sekä transistorien kasvattaminen muistisoluissa osoitetaan tehokkaiksi vastatoimiksi Near- Threshold Computing -tekniikan huonoja puolia vastaan. Tulokset antavat perusteita matalan energiankulutuksen IC-piirien suunnittelussa sille, kannattaako käyttää normaalia käyttöjännitettä, vai laskea sitä, jolloin piirin hidastuminen ja epävarmempi käyttäytyminen pitää ottaa huomioon.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
This thesis discusses the opportunities and challenges of the cloud computing technology in healthcare information systems by reviewing the existing literature on cloud computing and healthcare information system and the impact of cloud computing technology to healthcare industry. The review shows that if problems related to security of data are solved then cloud computing will positively transform the healthcare institutions by giving advantage to the healthcare IT infrastructure as well as improving and giving benefit to healthcare services. Therefore, this thesis will explore the opportunities and challenges that are associated with cloud computing in the context of Finland in order to help the healthcare organizations and stakeholders to determine its direction when it decides to adopt cloud technology on their information systems.
Resumo:
Video transcoding refers to the process of converting a digital video from one format into another format. It is a compute-intensive operation. Therefore, transcoding of a large number of simultaneous video streams requires a large amount of computing resources. Moreover, to handle di erent load conditions in a cost-e cient manner, the video transcoding service should be dynamically scalable. Infrastructure as a Service Clouds currently offer computing resources, such as virtual machines, under the pay-per-use business model. Thus the IaaS Clouds can be leveraged to provide a coste cient, dynamically scalable video transcoding service. To use computing resources e ciently in a cloud computing environment, cost-e cient virtual machine provisioning is required to avoid overutilization and under-utilization of virtual machines. This thesis presents proactive virtual machine resource allocation and de-allocation algorithms for video transcoding in cloud computing. Since users' requests for videos may change at di erent times, a check is required to see if the current computing resources are adequate for the video requests. Therefore, the work on admission control is also provided. In addition to admission control, temporal resolution reduction is used to avoid jitters in a video. Furthermore, in a cloud computing environment such as Amazon EC2, the computing resources are more expensive as compared with the storage resources. Therefore, to avoid repetition of transcoding operations, a transcoded video needs to be stored for a certain time. To store all videos for the same amount of time is also not cost-e cient because popular transcoded videos have high access rate while unpopular transcoded videos are rarely accessed. This thesis provides a cost-e cient computation and storage trade-o strategy, which stores videos in the video repository as long as it is cost-e cient to store them. This thesis also proposes video segmentation strategies for bit rate reduction and spatial resolution reduction video transcoding. The evaluation of proposed strategies is performed using a message passing interface based video transcoder, which uses a coarse-grain parallel processing approach where video is segmented at group of pictures level.
Resumo:
Smart phones became part and parcel of our life, where mobility provides a freedom of not being bounded by time and space. In addition, number of smartphones produced each year is skyrocketing. However, this also created discrepancies or fragmentation among devices and OSes, which in turn made an exceeding hard for developers to deliver hundreds of similar featured applications with various versions for the market consumption. This thesis is an attempt to investigate whether cloud based mobile development platforms can mitigate and eventually eliminate fragmentation challenges. During this research, we have selected and analyzed the most popular cloud based development platforms and tested integrated cloud features. This research showed that cloud based mobile development platforms may able to reduce mobile fragmentation and enable to utilize single codebase to deliver a mobile application for different platforms.
Resumo:
Recent technological developments have created new devices that could improve and simplify the construction of stimulus isolators. HEXFET transistors can switch large currents and hundreds of volts in nanoseconds. The newer opto-isolators can give a pulse rise time of a few nanoseconds, with output compatible with MOSFET devices, in which delays are reduced to nanoseconds. Integrated DC/DC converters are now available. Using these new resources we developed a new electrical stimulus isolator circuit with selectable constant-current and constant-voltage modes, which are precise and easy to construct. The circuit works like a regulated power supply in both modes with output switched to zero or to free mode through an opto-isolator device. The isolator analyses showed good practical performance. The output to ground resistance was 1011 ohms and capacitance 35 picofarads. The rise time and fall time were identical (5 µs) and constant. The selectable voltage or current output mode made it very convenient to use. The current mode, with higher output resistance values in low current ranges, permits intracellular stimulation even with tip resistances close to 100 megaohms. The high compliance of 200 V guarantees the value of the current stimulus. The very low output resistance in the voltage mode made the device highly suitable for extracellular stimulation with low impedance electrodes. Most importantly, these characteristics were achieved with a circuit that was easy to build and modify and assembled with components available in Brazil.
Resumo:
The aim of this study was to determine if the diagnostic profile of inpatients of a psychiatric unit in a general hospital influences the length of stay. The results of a retrospective survey comprising the first 16 years of operation of the Psychiatric Unit of the Ribeirão Preto General Hospital (PURP) showed that the progressive increase observed in the length of stay correlated with the increase in percentage of schizophrenia diagnosis, after the 8th year of hospital operation, and of affective disorders, after the 12th year. The length of hospitalization kept increasing until the 16th year, even though there was no change in the diagnostic profile of the patients admitted to the unit. In a prospective study encompassing the next six months, 61 inpatients were evaluated with the Structured Clinical Interview for DSM-III-R and the Brief Psychiatric Rating Scale (BPRS). The results showed that 82% of the inpatients fulfilled the diagnostic criteria for the schizophrenic or affective disorder spectrum at admission, with a discharge rate slower than for other diagnoses, although the length of hospitalization did not significantly differ among diagnostic categories. The results further demonstrated that in every diagnostic category more than 50% of the patients stayed in hospital for more than one week after reaching a BPRS score equal to 6, indicative of discharge. Overall, these data suggest that the increase in length of hospitalization may be due to a higher percentage of patients with a diagnosis of schizophrenia and affective disorder admitted to the PURP. In addition, patients with low symptomatic levels remained in hospital longer than they should have.
Resumo:
The prevalent rate of psychiatry morbidity amongst patients with cancer reported in various studies ranges from 5 to 50%, a variation that can be attributed to differences in sample size, the disease itself and treatment factors. The objectives of the present study were to determine the frequency of psychiatric morbidity amongst recently diagnosed cancer outpatients and try to identify which factors might be related to further psychological distress. Two hundred and eleven (70.9%) female patients and 87 (29.1%) male patients from the chemotherapy unit of the Cancer Hospital A.C. Camargo (São Paulo) completed a questionnaire that featured data on demographic, medical and treatment details. The Self Reporting Questionnaire (SRQ-20) was administered to the patients to determine their personal psychiatric morbidity. Seventy-two patients (25.8%) scored > or = 8 in the SRQ-20, the cut-off point for a patient to be considered a psychiatric case. When the low and high scoring groups were compared no differences were detected regarding age, marital status, tumor site, sex, or previous treatment. Nonetheless, patients in the lowest social class and those who were bedridden less than 50% of the time had a significantly higher probability of being a psychiatric case. Regarding help-seeking behavior in situations in which they had doubts or were frightened, about 64% of the total sample did not seek any type of support and did not talk to anyone. This frequency of psychiatric morbidity agrees with data from the cancer literature. According to many investigators, the early detection of a comorbid psychiatric disorder is crucial to relieve a patient's suffering.