958 resultados para material handling technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tailoring the nanostructures of electrode materials is an effective way to enhance their electrochemical performance for energy storage. Herein, an ice-templating "bricks-and-mortar" assembly approach is reported to make ribbon-like V2O5 nanoparticles and CNTs integrated into a two-dimensional (2D) porous sheet-like V2O5-CNT nanocomposite. The obtained sheet-like V2O5-CNT nanocomposite possesses unique structural characteristics, including a hierarchical porous structure, 2D morphology, large specific surface area and internal conducting networks, which lead to superior electrochemical performances in terms of long-term cyclability and significantly enhanced rate capability when used as a cathode material for LIBs. The sheet-like V2O5-CNT nanocomposite can charge/discharge at high rates of 5C, 10C and 20C, with discharge capacities of approximately 240 mA h g-1, 180 mA h g-1, and 160 mA h g-1, respectively. It also retains 71% of the initial discharge capacity after 300 cycles at a high rate of 5C, with only 0.097% capacity loss per cycle. The rate capability and cycling performance of the sheet-like V2O5-CNT nanocomposite are significantly better than those of commercial V2O5 and most of the reported V2O5 nanocomposite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing synthetic methods for graphene based cathode materials, with low cost and in an environmentally friendly way, is necessary for industrial production. Although the precursor of graphene is abundant on the earth, the most common precursor of graphene is graphene oxide (GO), and it needs many steps and reagents for transformation to graphite. The traditional approach for the synthesis of GO needs many chemicals, thus leading to a high cost for production and potentially great amounts of damage to the environment. In this study, we develop a simple wet ball-milling method to construct a V2O5/graphene hybrid structure in which nanometre-sized V2O5 particles/aggregates are well embedded and uniformly dispersed into the crumpled and flexible graphene sheets generated by in situ conversion of bulk graphite. The combination of V2O5 nanoparticles/aggregates and in situ graphene leads the hybrid to exhibit a markedly enhanced discharge capacity, excellent rate capability, and good cycling stability. This study suggests that nanostructured metal oxide electrodes integrated with graphene can address the poor cycling issues of electrode materials that suffer from low electronic and ionic conductivities. This simple wet ball-milling method can potentially be used to prepare various graphene based hybrid electrodes for large scale energy storage applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of domestic Chinese undergraduate engineering course taught by international Australasian teaching staff. The project is a part of a teaching collaboration between Deakin University and Wuhan University of Science and Technology. The cohort of students from Wuhan was a freshman undergraduate engineering course in mechanical engineering. The particular subject was a freshman engineering-materials course taught in English. The course covered an introduction to material-science principles and practices. A survey was used for evaluating student perceptions. It is aimed that this study will help academics from Deakin University to better understand student experiences, and to identify the current challenges and barriers faced in student learning. Analysis of the survey has shown that 90% of students agreed that they were motivated to learn and achieve the learning goals through this collaborative program. Around 90% of students found that group-based practical activities were helpful in achieving learning goals. Overall, 90% of students strongly agreed they were satisfied with the method of teaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: While there have been several reviews exploring the outcomes of various eHealth studies, none have been gastroenterology-specific. This paper aims to evaluate the research conducted within gastroenterology which utilizes internet-based eHealth technology to promote physical and psychological well-being. MATERIAL AND METHODS: A systematic literature review of internet-based eHealth interventions involving gastroenterological cohorts was conducted. Searched databases included: EbSCOhost Medline, CINAHL, and PsycINFO. Inclusion criteria were studies reporting on eHealth interventions (both to manage mental health problems and somatic symptoms) in gastroenterology, with no time restrictions. Exclusion criteria were non-experimental studies, or studies using only email as primary eHealth method, and studies in language other than English. RESULTS: A total of 17 papers were identified; seven studies evaluated the efficacy of a psychologically oriented intervention (additional two provided follow-up analyses exploring the original published data) and eight studies evaluated disease management programs for patients with either irritable bowel syndrome, inflammatory bowel disease (IBD) or celiac disease. Overall, psychological eHealth interventions were associated with significant reductions in bowel symptoms and improvement in quality of life (QoL) that tended to continue up to 12 months follow up. The eHealth disease management was shown to generally improve QoL, adherence, knowledge about the disease, and reduce healthcare costs in IBD, although the studies were associated with various methodological problems, and thus, this observation should be confirmed in well-designed interventional studies. CONCLUSIONS: Based on the evidence to date, eHealth internet-based technology is a promising tool that can be utilized to both promote and enhance gastrointestinal disease management and mental health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción El material particulado son partículas sólidas y líquidas emitidas al aire, las cuales pueden generar diferentes alteraciones en la salud, variando desde cuadros respiratorios alérgicos, a episodios asmáticos, dermatitis o inclusive llegar a facilitar la génesis de enfermedades de tipo neoplásico. Estos pueden tener origen natural e industrial, encontrandose en diferentes actividades económicas. Objetivo Evaluar la exposición laboral a material particulado en empresas pertenecientes a diferentes sectores económicos afiliadas a una ARL en Colombia, en el periodo comprendido entre 2011 al 2014 Metodología Es un estudio de corte transversal, analizando una base de datos de 257 empresas con 1108 mediciones de material particulado, recolectados entre 2011 – 2014. Las variables usadas fueron: región, actividad económica, área, oficio, tiempo de exposición y concentración de material particulado. Se realizó distribuciones de frecuencia, medidas de tendencia central y de dispersión. Se evaluaron las diferencias de las distribuciones de los tiempos de exposición y el porcentaje de exposición entre los grupos con y sin riesgo (los que sobrepasaban o no los límites permisibles), con la prueba asintótica no paramétrica de Mann Whitney. Resultados Las principales mediciones ambientales en las empresas fueron en la industria química con un 31%, siendo 2 de cada 3 datos pertenecientes a la región andina, las cuales tienen como principales contaminantes químicos las partículas no fraccionadas con el 70,9%. Respecto a las concentraciones ambientales de material particulado en las empresas participantes, se encontró un promedio de 1,72 mg/m3 ± 3,613, con una mediana de 0,480 mg/m3 y un coeficiente de variación de 210,05%. El 2,9% sobrepasaron los valores límites establecidos por la ACGIH (American Conference of Governmental Industrial Hygienists) y el 92,5% según los límites de la EPA (Agencia de Protección del Ambiente), presentando mayor riesgo en el personal operativo con 93,3% (p= 0,002). Conclusión El riesgo según los límites establecidos por la ACGIH para las mediciones realizadas en Colombia fue bajo, aunque al utilizar los parámetros de la EPA, el riesgo fue alto, por lo cual se requiere hacer un seguimiento específico a estas empresas y fomentar la implementación del sistema de gestión en seguridad y salud en el trabajo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.