838 resultados para linear mixed-effects models
Resumo:
The general change in the population structure and its impacts on the forest ownership structure were investigated in the thesis. The research assumed that the structural change in society has an effect on the outlook of the non-industrial private forest ownership. The changes in the structure of society were mainly restricted to population, education and occupation structures. The migration of the rural population into cities was also taken into consideration. The structural changes both in society and the non-industrial private forest ownership were examined as phenomena and their development directions were investigated since the middle of the 1970s. It could be established that the changes in the structures were mainly of the same kind in society as in forest owner structure. The clearest similarities between the changes in population and forest owner structure could be found in an increased mean age, a decrease in the 18 to 39 age bracket, those without a degree and in the farmers' shares. Furthermore it could be stated that migration into cities had taken place among both the forest owners and the general population. The main part of the research was concentrated on estimating regression models that explain the non-industrial private forest ownership change by the structural change in the population. A panel data was gathered from population statistics and previous forest ownership research information. The panel contained the years 1990 and 1999. With the assistance of the panel data it was possible to estimate regression and fixed effects' models that explained the structural changes in the non-industrial private forest ownership by evolution in the whole population. In the use of the estimated models authorities' forecasts considering the population were exploited. Only a few of the estimated models were statistically significant. This could be explained due to lack of a larger panel data. In addition the structural change of the non-industrial forest ownership was forecasted by trends.
Resumo:
Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.
Resumo:
Fusarium wilt of strawberry, incited by Fusarium oxysporum f. sp. fragariae (Fof), is a major disease of the cultivated strawberry (Fragaria xananassa) worldwide. An increase in disease outbreaks of the pathogen in Western Australia and Queensland plus the search for alternative disease management strategies place emphasis on the development of resistant cultivars. In response, a partial incomplete diallel cross involving four parents was performed for use in glasshouse resistance screenings. The resulting progeny were evaluated for their susceptibility to Fof. Best-performing progeny and suitability of progenies as parents were determined using data from disease severity ratings and analyzed using a linear mixed model incorporating a pedigree to produce best linear unbiased predictions of breeding values. Variation in disease response, ranging from highly susceptible to resistant, indicates a quantitative effect. The estimate of the narrow-sense heritability was 0.49 +/- 0.04 (SE), suggesting the population should be responsive to phenotypic recurrent selection. Several progeny genotypes have predicted breeding values higher than any of the parents. Knowledge of Fof resistance derived from this study can help select best parents for future crosses for the development of new strawberry cultivars with Fof resistance.
Resumo:
Objective: To systematically review studies reporting the prevalence in general adult inpatient populations of foot disease disorders (foot wounds, foot infections, collective ‘foot disease’) and risk factors (peripheral arterial disease (PAD), peripheral neuropathy (PN), foot deformity). Methods: A systematic review of studies published between 1980 and 2013 was undertaken using electronic databases (MEDLINE, EMBASE and CINAHL). Keywords and synonyms relating to prevalence, inpatients, foot disease disorders and risk factors were used. Studies reporting foot disease or risk factor prevalence data in general inpatient populations were included. Included study's reference lists and citations were searched and experts consulted to identify additional relevant studies. 2 authors, blinded to each other, assessed the methodological quality of included studies. Applicable data were extracted by 1 author and checked by a second author. Prevalence proportions and SEs were calculated for all included studies. Pooled prevalence estimates were calculated using random-effects models where 3 eligible studies were available. Results: Of the 4972 studies initially identified, 78 studies reporting 84 different cohorts (total 60 231 517 participants) were included. Foot disease prevalence included: foot wounds 0.01–13.5% (70 cohorts), foot infections 0.05–6.4% (7 cohorts), collective foot disease 0.2–11.9% (12 cohorts). Risk factor prevalence included: PAD 0.01–36.0% (10 cohorts), PN 0.003–2.8% (6 cohorts), foot deformity was not reported. Pooled prevalence estimates were only able to be calculated for pressure ulcer-related foot wounds 4.6% (95% CI 3.7% to 5.4%)), diabetes-related foot wounds 2.4% (1.5% to 3.4%), diabetes-related foot infections 3.4% (0.2% to 6.5%), diabetes-related foot disease 4.7% (0.3% to 9.2%). Heterogeneity was high in all pooled estimates (I2=94.2–97.8%, p<0.001). Conclusions: This review found high heterogeneity, yet suggests foot disease was present in 1 in every 20 inpatients and a major risk factor in 1 in 3 inpatients. These findings are likely an underestimate and more robust studies are required to provide more precise estimates.
Resumo:
Asian elephants (Dephas maximus), prominent ``flagship species'', arelisted under the category of endangered species (EN - A2c, ver. 3.1, IUCN Red List 2009) and there is a need for their conservation This requires understanding demographic and reproductive dynamics of the species. Monitoring reproductive status of any species is traditionally being carried out through invasive blood sampling and this is restrictive for large animals such as wild or semi-captive elephants due to legal. ethical, and practical reasons Hence. there is a need for a non-invasive technique to assess reproductive cyclicity profiles of elephants. which will help in the species' conservation strategies In this study. we developed an indirect competitive enzyme linked immuno-sorbent assay (ELISA) to estimate the concentration of one of the progesterone-metabolites i.e, allopregnanolone (5 alpha-P-3OH) in fecal samples of As elephants We validated the assay which had a sensitivity of 0.25 mu M at 90% binding with an EC50 value of 1 37 mu M Using female elephants. kept under semi-captive conditions in the forest camps of Mudumalar Wildlife Sanctuary, Tamil Nadu and Bandipur National Park, Karnataka, India. we measured fecal progesterone-metabolite (5 alpha-P-3OH) concentrations in six an and showed their clear correlation with those of scrum progesterone measured by a standard radio-immuno assay. Statistical analyses using a Linear Mixed Effect model showed a positive correlation (P < 0 1) between the profiles of fecal 5 alpha-P-3OH (range 0 5-10 mu g/g) and serum progesterone (range: 0 1-1 8 ng/mL) Therefore, our studies show, for the first time, that the fecal progesterone-metabolite assay could be exploited to predict estrus cyclicity and to potentially assess the reproductive status of captive and free-ranging female Asian elephants, thereby helping to plan their breeding strategy (C) 2010 Elsevier Inc.All rights reserved.
Resumo:
Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990-2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.
Resumo:
Overland rain retrieval using spaceborne microwave radiometer offers a myriad of complications as land presents itself as a radiometrically warm and highly variable background. Hence, land rainfall algorithms of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) have traditionally incorporated empirical relations of microwave brightness temperature (Tb) with rain rate, rather than relying on physically based radiative transfer modeling of rainfall (as implemented in the TMI ocean algorithm). In this paper, sensitivity analysis is conducted using the Spearman rank correlation coefficient as benchmark, to estimate the best combination of TMI low-frequency channels that are highly sensitive to the near surface rainfall rate from the TRMM Precipitation Radar (PR). Results indicate that the TMI channel combinations not only contain information about rainfall wherein liquid water drops are the dominant hydrometeors but also aid in surface noise reduction over a predominantly vegetative land surface background. Furthermore, the variations of rainfall signature in these channel combinations are not understood properly due to their inherent uncertainties and highly nonlinear relationship with rainfall. Copula theory is a powerful tool to characterize the dependence between complex hydrological variables as well as aid in uncertainty modeling by ensemble generation. Hence, this paper proposes a regional model using Archimedean copulas, to study the dependence of TMI channel combinations with respect to precipitation, over the land regions of Mahanadi basin, India, using version 7 orbital data from the passive and active sensors on board TRMM, namely, TMI and PR. Studies conducted for different rainfall regimes over the study area show the suitability of Clayton and Gumbel copulas for modeling convective and stratiform rainfall types for the majority of the intraseasonal months. Furthermore, large ensembles of TMI Tb (from the most sensitive TMI channel combination) were generated conditional on various quantiles (25th, 50th, 75th, and 95th) of the convective and the stratiform rainfall. Comparatively greater ambiguity was observed to model extreme values of the convective rain type. Finally, the efficiency of the proposed model was tested by comparing the results with traditionally employed linear and quadratic models. Results reveal the superior performance of the proposed copula-based technique.
Resumo:
Streams are periodically disturbed due to flooding, act as edges between habitats and also facilitate the dispersal of propagules, thus being potentially more vulnerable to invasions than adjoining regions. We used a landscape-wide transect-based sampling strategy and a mixed effects modelling approach to understand the effects of distance from stream, a rainfall gradient, light availability and fire history on the distribution of the invasive shrub Lantana camara L.(lantana) in the tropical dry forests of Mudumalai in southern India. The area occupied by lantana thickets and lantana stem abundance were both found to be highest closest to streams across this landscape with a rainfall gradient. There was no advantage in terms of increased abundance or area occupied by lantana when it grew closer to streams in drier areas as compared to moister areas. On an average, the area covered by lantana increased with increasing annual rainfall. Areas that experienced greater number of fires during 1989-2010 had lower lantana stem abundance irrespective of distance from streams. In this landscape, total light availability did not affect lantana abundance. Understanding the spatially variable environmental factors in a heterogeneous landscape influencing the distribution of lantana would aid in making informed management decisions at this scale.
Resumo:
Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.