946 resultados para latent growth curve modeling
Resumo:
Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Scientists predict that global agricultural lands will expand over the next few decades due to increasing demands for food production and an exponential increase in crop-based biofuel production. These changes in land use will greatly impact biogeochemical and biogeophysical cycles across the globe. It is therefore important to develop models that can accurately simulate the interactions between the atmosphere and important crops. In this study, we develop and validate a new process-based sugarcane model (included as a module within the Agro-IBIS dynamic agro-ecosystem model) which can be applied at multiple spatial scales. At site level, the model systematically under/overestimated the daily sensible/latent heat flux (by -10.5% and 14.8%, H and E, respectively) when compared against the micrometeorological observations from southeast Brazil. The model underestimated ET (relative bias between -10.1% and 12.5%) when compared against an agro-meteorological field experiment from northeast Australia. At the regional level, the model accurately simulated average yield for the four largest mesoregions (clusters of municipalities) in the state of Sao Paulo, Brazil, over a period of 16 years, with a yield relative bias of -0.68% to 1.08%. Finally, the simulated annual average sugarcane yield over 31 years for the state of Louisiana (US) had a low relative bias (-2.67%), but exhibited a lower interannual variability than the observed yields.
Resumo:
We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.
Resumo:
Recent studies predict that several lineages of tropical animals are at particular risk given current estimates of global climate change. Yet, much uncertainty exists on the effects of climate shifts in ectothermic species from cool temperate regions such as Patagonia. In this study, we focus on the impact of environmental temperature on growth, age at sexual maturity, and life-span of the Patagonian gecko Homonota darwini. Skeletochronological methods were used to assess the bone growth rates Of individuals from three populations at different geographic and temporal scales: two populations from Chubut (warm site; 1941 and 2010) and one population from Rio Negro (cold site; 1997-1998). Populations displayed similar bone arrangement and the growth patterns fit a von Bertalanffy curve. Three populations attained reproductive size at a minimum age of 3 yr, but at the cold site two specimens were shown to mature in 4 yr. We found no differences in juvenile growth rates in body size or bone zone width between juveniles of 1 to 3 yr of age from the 1941 warm site and the 2010 warm site. However, these traits appeared to be higher at these two warm sites than at the cold site, which is consistent with the climatic differences among the three localities. Our results suggest that higher temperatures positively affect growth, denoting that global warming might benefit H. darwini, especially the southern populations.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.
Resumo:
Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent different types of random variables/processes. However, applications to real, experimental data are still limited. In this article, PCE is used to represent the random time-evolution of metal corrosion growth in marine environments. The PCE coefficients are determined in order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at Taylors Beach, Australia. Accuracy of the representation and possibilities for model extrapolation are considered in the study. Results show that reasonably accurate smooth representations of the corrosion process can be obtained. The representation is not better because a smooth model is used to represent non-smooth corrosion data. Random corrosion leads to time-variant reliability problems, due to resistance degradation over time. Time variant reliability problems are not trivial to solve, especially under random process loading. Two example problems are solved herein, showing how the developed PCE representations can be employed in reliability analysis of structures subject to marine corrosion. Monte Carlo Simulation is used to solve the resulting time-variant reliability problems. However, an accurate and more computationally efficient solution is also presented.
Resumo:
Bacterial GatCAB amidotransferases are responsible for the transamidation of mischarged glutamyl-tRNA(Gln) into glutaminyl-tRNA(Gln). Mitochondria matrix also has a multienzymatic complex necessary for the transamidation of glutamyl-tRNA(Gln). Gtf1p, Her2p and Pet112p are the constituents of mitochondrial GatFAB amidotransferase complex. Her2p is subunit A of GatFAB complex, while Gtf1p is subunit F, a connector protein between Pet112p (subunit B) and Her2p. Here we evaluate through molecular modeling and amino acid correlation analysis the HER2 protein family. Localization studies indicated that Her2p is predominantly localized in the mitochondrial outer membrane, but it is also located in the mitochondrial matrix where together with Pet112p and Gtf1p constitutes the GatFAB complex. Finally, HER2 random mutagenesis unveiled important residues that provide thermo stability for the complex and are differently suppressed by overexpression of GTF1 or PET112. For instance, her2/ts11 mutant showed its fermentative growth impaired, and poorly rescued by GTF1 indicating that Her2p unknown function in the mitochondria outer membrane affects cell viability.
Resumo:
In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.
Resumo:
The cooperative motion algorithm was applied on the molecular simulation of complex chemical reactions and macromolecular orientation phenomena in confined geometries. First, we investigated the case of equilibrium step-growth polymerization in lamellae, pores and droplets. In such systems, confinement was quantified as the area/volume ratio. Results showed that, as confinement increases, polymerization becomes slower and the average molecular weight (MW) at equilibrium decreases. This is caused by the sterical hindrance imposed by the walls since chain growth reactions in their close vicinity have less realization possibilities. For reactions inside droplets at surfaces, contact angles usually increased after polymerization to compensate conformation restrictions imposed by confinement upon growing chains. In a second investigation, we considered monodisperse and chemically inert chains and focused on the effect of confinement on chain orientation. Simulations of thin polymer films showed that chains are preferably oriented parallel to the surface. Orientation increases as MW increases or as film thickness d decreases, in qualitative agreement with experiments with low MW polystyrene. It is demonstrated that the orientation of simulated chains results from a size effect, being a function of the ratio between chain end-to-end distance and d. This study was complemented by experiments with thin films of pi-conjugated polymers like MEH-PPV. Anisotropic refractive index measurements were used to analyze chain orientation. With increasing MW, orientation is enhanced. However, for MEH-PPV, orientation does not depend on d even at thicknesses much larger than the chain contour length. This contradiction with simulations was discussed by considering additional causes for orientation, for instance the appearance of nematic-like ordering in polymer films. In another investigation, we simulated droplet evaporation at soluble surfaces and reproduced the formation of wells surrounded by ringlike deposits at the surface, as observed experimentally. In our simulations, swollen substrate particles migrate to the border of the droplet to minimize the contact between solvent and vacuum, which costs the most energy. Deposit formation in the beginning of evaporation results in pinning of the droplet. When polymer chains at the substrate surface have strong uniaxial orientation, the resulting pattern is no longer similar to a ring but to a pair of half-moons. In a final stage, as an extension for the model developed for polymerization in nanoreactors, we studied the effect of geometrical confinement on a hypothetical oscillating reaction following the mechanism of the so called periodically forced Brusselator. It was shown that a reaction which is chaotic in the bulk may be driven to periodicity by confinement and vice-versa, opening new perspectives for chaos control.
Resumo:
Deep convection by pyro-cumulonimbus clouds (pyroCb) can transport large amounts of forest fire smoke into the upper troposphere and lower stratosphere. Here, results from numerical simulations of such deep convective smoke transport are presented. The structure, shape and injection height of the pyroCb simulated for a specific case study are in good agreement with observations. The model results confirm that substantial amounts of smoke are injected into the lower stratosphere. Small-scale mixing processes at the cloud top result in a significant enhancement of smoke injection into the stratosphere. Sensitivity studies show that the release of sensible heat by the fire plays an important role for the dynamics of the pyroCb. Furthermore, the convection is found to be very sensitive to background meteorological conditions. While the abundance of aerosol particles acting as cloud condensation nuclei (CCN) has a strong influence on the microphysical structure of the pyroCb, the CCN effect on the convective dynamics is rather weak. The release of latent heat dominates the overall energy budget of the pyroCb. Since most of the cloud water originates from moisture entrained from the background atmosphere, the fire-released moisture contributes only minor to convection dynamics. Sufficient fire heating, favorable meteorological conditions, and small-scale mixing processes at the cloud top are identified as the key ingredients for troposphere-to-stratosphere transport by pyroCb convection.
Resumo:
Population growth in urban areas is a world-wide phenomenon. According to a recent United Nations report, over half of the world now lives in cities. Numerous health and environmental issues arise from this unprecedented urbanization. Recent studies have demonstrated the effectiveness of urban green spaces and the role they play in improving both the aesthetics and the quality of life of its residents. In particular, urban green spaces provide ecosystem services such as: urban air quality improvement by removing pollutants that can cause serious health problems, carbon storage, carbon sequestration and climate regulation through shading and evapotranspiration. Furthermore, epidemiological studies with controlled age, sex, marital and socio-economic status, have provided evidence of a positive relationship between green space and the life expectancy of senior citizens. However, there is little information on the role of public green spaces in mid-sized cities in northern Italy. To address this need, a study was conducted to assess the ecosystem services of urban green spaces in the city of Bolzano, South Tyrol, Italy. In particular, we quantified the cooling effect of urban trees and the hourly amount of pollution removed by the urban forest. The information was gathered using field data collected through local hourly air pollution readings, tree inventory and simulation models. During the study we quantified pollution removal for ozone, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns). We estimated the above ground carbon stored and annually sequestered by the urban forest. Results have been compared to transportation CO2 emissions to determine the CO2 offset potential of urban streetscapes. Furthermore, we assessed commonly used methods for estimating carbon stored and sequestered by urban trees in the city of Bolzano. We also quantified ecosystem disservices such as hourly urban forest volatile organic compound emissions.
Resumo:
During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.
Resumo:
Neurodevelopment of preterm children has become an outcome of major interest since the improvement in survival due to advances in neonatal care. Many studies focused on the relationships among prenatal characteristics and neurodevelopmental outcome in order to identify the higher risk preterms’ subgroups. The aim of this study is to analyze and put in relation growth and development trajectories to investigate their association. 346 children born at the S.Orsola Hospital in Bologna from 01/01/2005 to 30/06/2011 with a birth weight of <1500 grams were followed up in a longitudinal study at different intervals from 3 to 24 months of corrected age. During follow-up visits, preterms’ main biometrical characteristics were measured and the Griffiths Mental Development Scale was administered to assess neurodevelopment. Latent Curve Models were developed to estimate the trajectories of length and of neurodevelopment, both separately and combined in a single model, and to assess the influence of clinical and socio-economic variables. Neurodevelopment trajectory was stepwise declining over time and length trajectory showed a steep increase until 12 months and was flat afterwards. Higher initial values of length were correlated with higher initial values of neurodevelopment and predicted a more declining neurodevelopment. SGA preterms and those from families with higher status had a less declining neurodevelopment slope, while being born from a migrant mother proved negative on neurodevelopment through the mediating effect of a being taller at 3 months. A longer stay in NICU used as a proxy of preterms’ morbidity) was predictive of lower initial neurodevelopment levels. At 24 months, neurodevelopment is more similar among preterms and is more accurately evaluated. The association among preterms’ neurodevelopment and physiological growth may provide further insights on the determinants of preterms’ outcomes. Sound statistical methods, exploiting all the information collected in a longitudinal study, may be more appropriate to the analysis.
Resumo:
Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn